期刊论文详细信息
BMC Evolutionary Biology
The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates
Donald R Davis2  Conrad C Labandeira1  Jae-Cheon Sohn3 
[1] College of Life Sciences, Capital Normal University, Beijing, China;Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA;Department of Entomology, University of Maryland, College Park, MD, USA
关键词: Divergence-time estimation;    Diversity;    Taphonomy;    Fossil record;    Lepidoptera;   
Others  :  1121697
DOI  :  10.1186/s12862-015-0290-8
 received in 2014-09-08, accepted in 2015-01-15,  发布年份 2015
PDF
【 摘 要 】

Background

It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts.

Results

We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages.

Conclusion

Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

【 授权许可】

   
2015 Sohn et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150213010207761.pdf 2613KB PDF download
Figure 4. 66KB Image download
Figure 3. 60KB Image download
Figure 2. 109KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kristensen NP, Scoble M, Karsholt O: Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 2007, 1668:699-747.
  • [2]Gaston KJ: The magnitude of global insect species richness. Conserv Biol 1991, 5:283-96.
  • [3]Hammond PM: Species inventory. In Global Biodiversity Status of the Earth’s Living Resources. Edited by Groombridge B. Chapman & Hall, London; 1992:17-39.
  • [4]Scoble MJ: The Lepidoptera: Form, Function and Diversity. Oxford University Press, Oxford; 1992.
  • [5]Proctor M, Yeo P, Lack A: The Natural History of Pollination. Harper Collins Publishers, London; 1996.
  • [6]Lacki MJ, Johnson JS, Dodd LE, Baker MD: Prey consumption of insectivorous bats in coniferous forests of North-Central Idaho. Northwest Sci 2007, 81:199-205.
  • [7]Kritsky G, Cherry R: Insect Mythology. Lincoln, Writers Club Press; 2000.
  • [8]Kapoor VC: Origin and Evolution of Insects. Kalyani Publishers, New Delhi & Ludhiana; 1981.
  • [9]Labandeira CC, Sepkoski TJ Jr: Insect diversity in the fossil record. Science 1993, 261:310-5.
  • [10]Kristensen NP, Skalski AW: Phylogeny and palaeontology. In Handbook of Zoology. Volume IV Arthropoda: Insecta. Part 35 Lepidoptera, Moths and Butterflies 1: Evolution, Systematics, and Biogeography. Edited by Kristensen NP. Walter de Gruyter, Berlin & New York; 1998:7-25.
  • [11]Kozlov MV, Ivanov VD, Rasnitsyn AP: Order Lepidoptera Linné, 1758. The butterflies and moths (= Papilionida Laicharting, 1781). In History of Insects. Edited by Rasnitsyn AP, Quicke DLJ. Kluwer Academic Publishers, Dordrecht, Boston & London; 2002:220-7.
  • [12]Carpenter FM: Treatise on Invertebrate Paleontology. Part R (Arthropoda–4), 3 and 4 (Superclass Hexapoda). Geological Society of America & Lawrence: the University of Kansas, Boulder; 1992.
  • [13]Kristensen NP: Early evolution of the Lepidoptera + Trichoptera lineage: phylogeny and the ecological scenario. Mém Mus Natl His Nat 1997, 173:253-71.
  • [14]Wahlberg N, Weingartner E, Nylin S: Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol 2003, 28:473-84.
  • [15]Wahlberg N, Wheat CW, Peña C: Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One 2013, 8:e80875. doi:10.1371/journal.pone.0080875
  • [16]Braby MF, Vila R, Pierce NE: Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zool J Linn Soc 2006, 147:239-75.
  • [17]Donoghue PCJ, Benton MJ: Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol 2007, 22:424-31.
  • [18]Pyron RA: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 2010, 59:185-94.
  • [19]Skalski AW: Les lépidoptères fossiles de l'ambre, Etat actuel de nos connaissances (3me partie et fin). Linneana Belg 1976, 6:221-33.
  • [20]Whalley PES: The systematics and biogeography of the Lower Jurassic insects of Dorset, England. Bull Br Mus Nat Hist (Geol) 1985, 39:107-89.
  • [21]Grimaldi DA, Engel MS: Evolution of the Insects. Cambridge University Press, Cambridge; 2005.
  • [22]Ansorge J: Revision of the “Trichoptera” described by Geinitz and Handlirsch from the Lower Toarcian of Dobbertin (Germany) based on new material. Nova Suppl Entomol 2002, 15:55-74.
  • [23]Zhang W, Shih C, Labandeira CC, Sohn J-C, Davis DR, Santiago-Blay JA, et al.: New fossil Lepidoptera (Insecta: Amphiesmenoptera) from the Middle Jurassic Jiulongshan Formation of northeastern China. PLoS One 2013, 8:e79500. doi:10.1371/journal.pone.0079500
  • [24]Huang D, Nel A, Minet J: A new family of moths from the Middle Jurassic (Insecta: Lepidoptera). Acta Geol Sinica 2010, 84:874-85.
  • [25]Skalski AW: An annotated review of all fossil records of Lower Lepidoptera. Bull Sugadaira Montane Res Cent 1990, 11:125-8.
  • [26]de Jong R: Estimating time and space in the evolution of the Lepidoptera. Tijdschr Entomol 2007, 150:319-46.
  • [27]Carpenter FM: A review of our present knowledge of the geological history of the insects. Psyche 1930, 37:15-34.
  • [28]Riek EF: The Insects of Australia. Melbourne University Press, Melbourne; 1970.
  • [29]Ollerton J: La evolución de las relaciones polinizador-planta en los artrópodos. Bol Soc Entomol Aragonesa 1999, 26:741-58.
  • [30]Carpenter FM, Burnham L: The geological record of insects. Annu Rev Earth Pl Sci 1985, 13:297-314.
  • [31]Powell JA, Mitter C, Farrell BD: Evolution of larval food preferences in Lepidoptera. In Handbook of Zoology. Volume IV Arthropoda: Insecta. Part 35 Lepidoptera, Moths and Butterflies 1: Evolution, Systematics, and Biogeography. Edited by Kristensen NP. Walter de Gruyter, Berlin & New York; 1998:403-22.
  • [32]Sohn J-C, Labandeira C, Davis D, Mitter C: An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 2012, 3286:1-132.
  • [33]Sohn J-C, Lamas G: Corrections, additions, and nomenclatural notes to the recently published world catalog of fossil and subfossil Lepidoptera. Zootaxa 2013, 3599:395-9.
  • [34]Labandeira CC: Assessing the fossil record of plant–insect associations: ichnodata versus body-fossil data. In Sediment–Organism Interactions: A Multifaceted Ichnology. Edited by Bromley RG, Buatois LA, Mángano F, Genise JF, Melchor RN. Society for Sedimentary Geology, Tulsa; 2007:9-26.
  • [35]Labandeira CC: Insects and other hexapods. In Encyclopedia of Paleontology. Edited by Singer R. Fitzroy-Dearborn Publishers, Chicago; 1999:603-24.
  • [36]Gradstein FM, Ogg JG, Schmitz MD, Ogg GM: A Geologic Time Scale 2012. Elsevier, Boston; 2012.
  • [37]van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, et al.: Order Lepidoptera Linnaeus, 1758. In Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness Edited by Zhang Z-Q. 2011, 212-21.
  • [38]Mutanen M, Wahlberg N, Kaila L: Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc R Soc B 2010, 277:2839-48.
  • [39]Cho S, Zwick A, Regier J, Mitter C, Cummings M, Yao J, et al.: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Syst Biol 2011, 60:782-96.
  • [40]Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, Kawahara AY, et al.: A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 2013, 8:e58568. doi:10.1371/journal.pone.0058568
  • [41]Bazinet AL, Cummings MP, Mitter KT, Mitter CW: Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS One 2013, 8:e82615. doi:10.1371/journal.pone.0082615
  • [42]Labandeira CC: The fossil record of insect extinction: new approaches and future directions. Am Entomol 2005, 51:14-29.
  • [43]Balmford AM, Jayasuriya AMH, Green MJB: Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proc Roy Soc B 1996, 263:1571-5.
  • [44]Labandeira CC: A compendium of fossil insect families. Milwaukee Public Mus Contr Biol Geol 1994, 88:1-71.
  • [45]Nicholson DB, Ross AJ, Mayhew PJ: Fossil evidence for key innovations in the evolution of insect diversity. Proc R Soc B 2014, 281:20141823.
  • [46]Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ: Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One 2014, 9:e109085. doi:10.1371/journal.pone.0109085
  • [47]Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS: The impact of the pull of the recent on the history of marine diversity. Science 2003, 300:1133-5.
  • [48]Seilacher A, Rief W-E, Westphal F: Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Phil Trans R Soc Lond B 1985, 311:5-23.
  • [49]Rust J: Fossil insects from the Fur and Olst Formations (“Mo Clay”) of Denmark (upper Paleocene/lowermost Eocene). In Proceedings of the First International Palaeoentomological Conference, Moscow. Edited by Scoggin M. AMBA Projects International, Bratislava; 1998:135-9.
  • [50]Rust J: Biologie der Insekten aus dem ältersten Tertiär Nordeuropas. 1999.
  • [51]Penney D: Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester; 2010.
  • [52]Duncan IJ: The Taphonomy of Insects. 1997.
  • [53]Wagner T, Neinhuis C, Barthlott W: Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 1996, 77:213-25.
  • [54]Smith DM: Comparative taphonomy and paleoecology of insects in lacustrine deposits. In Proceedings of the First International Palaeoentomological Conference. Edited by Zherikhin VV. AMBA Projects International & Moscow: Paleontological Institute, Bratislava; 1998:155-61.
  • [55]Evenhuis NL. Catalogue of the Fossil Flies of the World (Insecta: Diptera). [http://hbs.bishopmuseum.org/fossilcat]
  • [56]Elias SA: Quaternary Insects and their Environments. Smithsonian Institution Press, Washington DC & London; 1992.
  • [57]Sutherland W. Botanical Inclusions in Baltic Amber. [http://content.yudu.com/Library/A1og25/PlantsADifferentPers/resources/content/56.swf]
  • [58]Sobczyk T, Kobbert MJ: Die Psychidae des baltischen Bernsteins. Nota lepid 2009, 32:13-22.
  • [59]Labandeira CC, Wilf P, Johnson KR, Marsh F. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0―Spring 2007). [http://paleobiology.si.edu/pdfs/insectDamageGuide3.01.pdf]
  • [60]Lancucka-Srodoniowa M: Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc Bot Pol 1964, 33:469-73.
  • [61]Solomon JD: Frass characteristics for identifying insect borers (Lepidoptera: Cossidae and Sesiidae; Coleoptera: Cerambycidae) in living hardwoods. Can Entomol 1977, 109:295-303.
  • [62]Grimaldi D: The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Missouri Bot Gard 1999, 86:373-406.
  • [63]Richter G, Storch G: Beiträge zur Ernährungsbiologie eozäner Fledermäuse aus der “Grube Messel”. Natur Mus 1980, 110:353-67.
  • [64]Azar D, Gèze R, El-Samrani A, Maalouly J, Nel A: Jurassic amber in Lebanon. Acta Geol Sinica 2010, 84:977-83.
  • [65]Ross AJ, Jarzembowski EA, Brooks SJ: The Cretaceous and Cenozoic record of insects (Hexapoda) with regard to global change. In Biotic response to global change, the last 145 million years. Edited by Culver SJ, Rawson PF. Cambridge University Press, Cambridge; 2000:288-302.
  • [66]De Queiroz A: Contingent predictability in evolution: key traits and diversification. Syst Biol 2002, 51:917-29.
  • [67]Kozlov MV: Paleontology of the Lepidoptera and problems of phylogeny of the order Papilionoidea. In The Cretaceous Biocoenotic Crisis and the Evolution of Insects. Edited by Ponomarenko AG. Nauka Press, Moscow; 1988:16-69.
  • [68]Labandeira CC, Dilcher DL, Davis DR, Wagner DL: Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc Natl Acad Sci U S A 1994, 91:12278-82.
  • [69]Rasnitsyn AP: Pervaya nakhodka babochki yurskogo vozrasta [First find of a moth from the Jurassic]. Dokl Akad Nauk SSSR 1983, 269:467-71.
  • [70]Friis EM, Crane PR, Pederson NM: Early Flowers and Angiosperm Evolution. Cambridge University Press, Cambridge; 2011.
  • [71]Imada Y, Kawakita A, Kato M: Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proc Roy Soc B 2011, 278:3026-33.
  • [72]Bell CD, Soltis DE, Soltis PS: The age and diversification of the angiosperms re-visited. Am J Bot 2010, 97:1296-303.
  • [73]Magallón S, Hilu KW, Quandt D: Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 2013, 100:556-73.
  • [74]Labandeira C: Amber. In Reading and Writing of the Fossil record: Preservational Pathways to Exceptional Fossilization Edited by Laflamme M, Schiffbauer JD, Darroch SAF. 2014, 163-216.
  • [75]Schmidt AR, Jancke S, Lindquist EE, Ragazzi E, Roghi G, Nascimbene PC, et al.: Arthropods in amber from the Triassic Period. Proc Natl Acad Sci U S A 2012, 109:14796-801.
  • [76]Raup DM: Biases in the fossil record of species and genera. Bull Carnegie Mus Nat Hist 1979, 13:85-91.
  • [77]Warnock RCM, Yang Z, Donoghue PCJ: Exploring uncertainty in the calibration of the molecular clock. Biol Letters 2012, 8:156-9.
  • [78]Brocklehurst N, Upchurch P, Mannion PD, O’Connor J: The completeness of the fossil record of Mesozoic birds: Implications for early avian evolution. PLoS One 2012, 7:e39056. doi:10.1371/journal.pone.0039056
  文献评价指标  
  下载次数:74次 浏览次数:53次