期刊论文详细信息
BMC Microbiology
A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella
Ryutaro Utsumi1  Kei Hagihara1  Haruka Emori1  Wataru Nomura1  Hironori Hayashi1  Akinori Kato1 
[1] Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara 631–8505, 3327-204, Japan
关键词: CpxR/CpxA;    CacA;    RpoS;    RssB;    Network;    Connector;    Two-component system;   
Others  :  1221729
DOI  :  10.1186/1471-2180-12-224
 received in 2012-07-11, accepted in 2012-09-21,  发布年份 2012
PDF
【 摘 要 】

Background

Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined.

Results

Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation.

Conclusions

We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.

【 授权许可】

   
2012 Kato et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803092743836.pdf 1172KB PDF download
Figure 5. 76KB Image download
Figure 4. 118KB Image download
Figure 3. 135KB Image download
Figure 2. 60KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ulrich LE, Zhulin IB: The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 2010, 38(Database issue):D401-407.
  • [2]Laub MT, Goulian M: Specificity in two-component signal transduction pathways. Annu Rev Genet 2007, 41:121-145.
  • [3]Bijlsma JJ, Groisman EA: Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol 2003, 11(8):359-366.
  • [4]Mitrophanov AY, Groisman EA: Signal integration in bacterial two-component regulatory systems. Genes Dev 2008, 22(19):2601-2611.
  • [5]Kato A, Groisman EA: The PhoQ/PhoP regulatory network of Salmonella enterica. Adv Exp Med Biol 2008, 631:7-21.
  • [6]Kato A, Groisman EA: Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 2004, 18(18):2302-2313.
  • [7]Kox LF, Wosten MM, Groisman EA: A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 2000, 19(8):1861-1872.
  • [8]Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA: The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci USA 2006, 103(36):13503-13508.
  • [9]Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S: Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 2008, 68(2):298-313.
  • [10]Eguchi Y, Itou J, Yamane M, Demizu R, Yamato F, Okada A, Mori H, Kato A, Utsumi R: B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc Natl Acad Sci USA 2007, 104(47):18712-18717.
  • [11]Gerken H, Charlson ES, Cicirelli EM, Kenney LJ, Misra R: MzrA: a novel modulator of the EnvZ/OmpR two-component regulon. Mol Microbiol 2009, 72(6):1408-1422.
  • [12]Kato A, Ohnishi H, Yamamoto K, Furuta E, Tanabe H, Utsumi R: Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci Biotechnol Biochem 2000, 64(6):1203-1209.
  • [13]Cosma CL, Danese PN, Carlson JH, Silhavy TJ, Snyder WB: Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. Mol Microbiol 1995, 18(3):491-505.
  • [14]Kato A, Tanabe H, Utsumi R: Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J Bacteriol 1999, 181(17):5516-5520.
  • [15]Lippa AM, Goulian M: Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet 2009, 5(12):e1000788.
  • [16]Kato A, Chen HD, Latify T, Groisman EA: Reciprocal Control Between a Bacterium's Regulatory System and the Modification Status of its Lipopolysaccharide. Mol Cell 2012, 47(6):897-908.
  • [17]Vogt SL, Raivio TL: Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012, 326(1):2-11.
  • [18]Buelow DR, Raivio TL: Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J Bacteriol 2005, 187(19):6622-6630.
  • [19]DiGiuseppe PA, Silhavy TJ: Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 2003, 185(8):2432-2440.
  • [20]Isaac DD, Pinkner JS, Hultgren SJ, Silhavy TJ: The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci USA 2005, 102(49):17775-17779.
  • [21]Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ: Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 1995, 177(15):4216-4223.
  • [22]Otto K, Silhavy TJ: Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 2002, 99(4):2287-2292.
  • [23]Raivio TL, Laird MW, Joly JC, Silhavy TJ: Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response. Mol Microbiol 2000, 37(5):1186-1197.
  • [24]Yamamoto K, Ishihama A: Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem 2006, 70(7):1688-1695.
  • [25]McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, et al.: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856.
  • [26]Raivio TL, Silhavy TJ: The sigmaE and Cpx regulatory pathways:overlapping but distinct envelope stress responses. Curr Opin Microbiol 1999, 2(2):159-165.
  • [27]Raffa RG, Raivio TL: A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 2002, 45(6):1599-1611.
  • [28]Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 2003, 185(19):5735-5746.
  • [29]Lee SJ, Gralla JD: Sigma38 (rpoS) RNA polymerase promoter engagement via -10 region nucleotides. J Biol Chem 2001, 276(32):30064-30071.
  • [30]Ramachandran VK, Shearer N, Jacob JJ, Sharma CM, Thompson A: The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression. BMC Genomics 2012, 13:25. BioMed Central Full Text
  • [31]Ritz D, Beckwith J: Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 2001, 55:21-48.
  • [32]Slamti L, Waldor MK: Genetic analysis of activation of the Vibrio cholerae Cpx pathway. J Bacteriol 2009, 191(16):5044-5056.
  • [33]Stewart EJ, Katzen F, Beckwith J: Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 1999, 18(21):5963-5971.
  • [34]Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K: Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure 2007, 15(8):963-976.
  • [35]Tao K, Watanabe S, Narita S, Tokuda H: A periplasmic LolA derivative with a lethal disulfide bond activates the Cpx stress response system. J Bacteriol 2010, 192(21):5657-5662.
  • [36]Lippa AM, Goulian M: Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. J Bacteriol 2012, 194(6):1457-1463.
  • [37]Kumar JK, Tabor S, Richardson CC: Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci USA 2004, 101(11):3759-3764.
  • [38]Hemm MR, Paul BJ, Miranda-Rios J, Zhang A, Soltanzad N, Storz G: Small stress response proteins in Escherichia coli: proteins missed by classical proteomic studies. J Bacteriol 2010, 192(1):46-58.
  • [39]Kato A, Mitrophanov AY, Groisman EA: A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proc Natl Acad Sci USA 2007, 104(29):12063-12068.
  • [40]Davis RW, Bolstein D, Roth JR: Advanced bacterial genetics. Cold Spring Harbor Lab, Cold Spring Harbor, N.Y.; 1980.
  • [41]Snavely MD, Gravina SA, Cheung T-BT, Miller CG, Maguire ME: Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtB expression. J Biol Chem 1991, 266(2):824-829.
  • [42]Camp AH, Losick R: A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 2009, 23(8):1014-1024.
  • [43]Miller JH: Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1972.
  • [44]Ellermeier CD, Janakiraman A, Slauch JM: Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 2002, 290(1–2):153-161.
  • [45]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97(12):6640-6645.
  • [46]Pan W, Ravot E, Tolle R, Frank R, Mosbach R, Turbachova I, Bujard H: Vaccine candidate MSP-1 from Plasmodium falciparum: a redesigned 4917 bp polynucleotide enables synthesis and isolation of full-length protein from Escherichia coli and mammalian cells. Nucleic Acids Res 1999, 27(4):1094-1103.
  • [47]Zhou MY, Gomez-Sanchez CE: Universal TA cloning. Curr Issues Mol Biol 2000, 2(1):1-7.
  • [48]Fields PI, Groisman EA, Heffron F: A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 1989, 243(4894 Pt 1):1059-1062.
  • [49]Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166(4):557-580.
  • [50]Tabor S, Richardson CC: A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 1985, 82:1074-1078.
  • [51]Cherepanov PP, Wackernagel W: Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158(1):9-14.
  • [52]Guzman L-M, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177(14):4121-4130.
  文献评价指标  
  下载次数:91次 浏览次数:22次