期刊论文详细信息
BMC Genomics
CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data
Jean-Pierre Kocher1  Huihuang Yan1  Matthew Bockol1  Sumit Middha1  Aditya Bhagwate1  Jared Evans1  Zhifu Sun1 
[1] Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
关键词: Variant detection;    Differential expression;    Analysis pipeline;    miRNA sequencing;   
Others  :  1216728
DOI  :  10.1186/1471-2164-15-423
 received in 2014-03-09, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

miRNAs play a key role in normal physiology and various diseases. miRNA profiling through next generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of computational resources and bioinformatics expertise. Several web based analytical tools have been developed but they are limited to processing one or a pair of samples at time and are not suitable for a large scale study. Lack of flexibility and reliability of these web applications are also common issues.

Results

We developed a Comprehensive Analysis Pipeline for microRNA Sequencing data (CAP-miRSeq) that integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification, data visualization, variant detection in miRNA coding region, and more flexible differential expression analysis between experimental conditions. According to computational infrastructure, users can install the package locally or deploy it in Amazon Cloud to run samples sequentially or in parallel for a large number of samples for speedy analyses. In either case, summary and expression reports for all samples are generated for easier quality assessment and downstream analyses. Using well characterized data, we demonstrated the pipeline’s superior performances, flexibility, and practical use in research and biomarker discovery.

Conclusions

CAP-miRSeq is a powerful and flexible tool for users to process and analyze miRNA-seq data scalable from a few to hundreds of samples. The results are presented in the convenient way for investigators or analysts to conduct further investigation and discovery.

【 授权许可】

   
2014 Sun et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702040023957.pdf 2488KB PDF download
Figure 5. 84KB Image download
Figure 4. 104KB Image download
Figure 3. 99KB Image download
Figure 2. 66KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 2010, 42(8):1273-1281.
  • [2]Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. Rna 2010, 16(5):991-1006.
  • [3]Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, Sun Z, Wu J: mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 2010, 38(Web Server issue):W392-W397.
  • [4]Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N: miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 2010, 26(20):2615-2616.
  • [5]An J, Lai J, Lehman ML, Nelson CC: miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res 2013, 41(2):727-737.
  • [6]Zhao W, Liu W, Tian D, Tang B, Wang Y, Yu C, Li R, Ling Y, Wu J, Song S, Hu S: wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 2011, 27(21):3076-3077.
  • [7]Muller S, Rycak L, Winter P, Kahl G, Koch I, Rotter B: omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 2013, 29(20):2651-2652.
  • [8]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [9]Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, Sun J, Guo AY: Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 2012, 33(1):254-263.
  • [10]Bhattacharya A, Ziebarth JD, Cui Y: SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 2013, 41(Database issue):D977-D982.
  • [11]Slaby O, Bienertova-Vasku J, Svoboda M, Vyzula R: Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer. J Cell Mol Med 2012, 16(1):8-21.
  • [12]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB Net J 2011, 17(1):3.
  • [13]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
  • [14]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [15]Mackowiak SD: Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinformatics 2011, Chapter 12:Unit 12. 10
  • [16]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20(9):1297-1303.
  • [17]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [18]Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X: Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PloS one 2010, 5(12):e15224.
  • [19]Wu D, Hu Y, Tong S, Williams BR, Smyth GK, Gantier MP: The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease. RNA 2013, 19(7):876-888.
  • [20]Havens MA, Reich AA, Duelli DM, Hastings ML: Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 2012, 40(10):4626-4640.
  • [21]Yang JS, Lai EC: Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 2010, 9(22):4455-4460.
  • [22]Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ: A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010, 328(5986):1694-1698.
  • [23]Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B: Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res 2012, 40(10):4298-4305.
  • [24]Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X, Cooke HJ, Xue Y, Shi Q: CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics 2012, 28(14):1925-1927.
  • [25]Ebhardt HA, Tsang HH, Dai DC, Liu Y, Bostan B, Fahlman RP: Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res 2009, 37(8):2461-2470.
  • [26]Luciano DJ, Mirsky H, Vendetti NJ, Maas S: RNA editing of a miRNA precursor. RNA 2004, 10(8):1174-1177.
  • [27]Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R, Stratton MR: RNA editing of human microRNAs. Genome Biol 2006, 7(4):R27. BioMed Central Full Text
  文献评价指标  
  下载次数:36次 浏览次数:14次