期刊论文详细信息
BMC Genomics
RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean [Glycine max (L.) Merr.]
Deyue Yu1  Qingsheng Cai2  Zhenbin Hu1  Jingjing Yu1  Guangli Xu1  Yu Gong1  Fang Huang1  Guixia Shi1 
[1]National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
[2]College of Life Sciences, Nanjing Agricultural University, Nanjing, China
关键词: Mutant;    Curled-cotyledon;    Plant hormone;    RNA-seq;    Soybean;   
Others  :  857059
DOI  :  10.1186/1471-2164-15-510
 received in 2014-01-18, accepted in 2014-06-18,  发布年份 2014
PDF
【 摘 要 】

Background

Soybean is one of the most economically important crops in the world. The cotyledon is the nutrient storage area in seeds, and it is critical for seed quality and yield. Cotyledon mutants are important for the genetic dissection of embryo patterning and seed development. However, the molecular mechanisms underlying soybean cotyledon development are largely unexplored.

Results

In this study, we characterised a soybean curled-cotyledon (cco) mutant. Compared with wild-type (WT), anatomical analysis revealed that the cco cotyledons at the torpedo stage became more slender and grew outward. The entire embryos of cco mutant resembled the “tail of swallow”. In addition, cco seeds displayed reduced germination rate and gibberellic acid (GA3) level, whereas the abscisic acid (ABA) and auxin (IAA) levels were increased. RNA-seq identified 1,093 differentially expressed genes (DEGs) between WT and the cco mutant. The KEGG pathway analysis showed many DEGs were mapped to the hormone biosynthesis and signal transduction pathways. Consistent with assays of hormones in seeds, the results of RNA-seq indicated auxin and ABA biosynthesis and signal transduction in cco were more active than in WT, while an early step in GA biosynthesis was blocked, as well as conversion rate of inactive GAs to bioactive GAs in GA signaling. Furthermore, genes participated in other hormone biosynthesis and signalling pathways such as cytokinin (CK), ethylene (ET), brassinosteroid (BR), and jasmonate acid (JA) were also affected in the cco mutant.

Conclusions

Our data suggest that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in cco, and changes in these pathways may partially contribute to the cco mutant phenotype, suggesting the involvement of multiple hormones in the coordination of soybean cotyledon development.

【 授权许可】

   
2014 Shi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723063427276.pdf 1676KB PDF download
84KB Image download
64KB Image download
51KB Image download
41KB Image download
89KB Image download
39KB Image download
77KB Image download
【 图 表 】

【 参考文献 】
  • [1]Bils RF, Howell RW: Biochemical and cytological changes in developing soybean cotyledons. Crop Sci 1963, 3:304-308.
  • [2]Goldberg RB, Paiva G, Adegari RY: Plant embryogenesis: zygote to seed. Science 1994, 266:605-614.
  • [3]Abe M, Katsumata H, Komeda Y, Takahashi T: Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 2003, 130:635-643.
  • [4]Aida M, Ishida T, Tasaka M: Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 1999, 126:1563-1570.
  • [5]Izhakia A, Bowman JL: KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 2007, 19:495-508.
  • [6]Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK: Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 2002, 129:2297-2306.
  • [7]Long JA, Ohno C, Smith ZR, Meyerowitz EM: TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006, 312:1520-1523.
  • [8]Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B: CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 2003, 131:915-922.
  • [9]Keddie JS, Carroll BJ, Thomas CM, Reyes MEC, Klimyuk V, Holtan H, Gruissem W, Jones JDG: Transposon tagging of the defective embryo and meristems gene of tomato. Plant Cell 1998, 10:877-887.
  • [10]Avasarala S, Yang J, Caruso JL: Production of phenocopies of the lanceolate mutant in tomato using polar auxin transport inhibitors. J Exp Biol 1996, 47:709-712.
  • [11]Al-Hammadi ASA, Sreelakshmi Y, Negi S, Siddiqi I, Sharma R: The polycotyledon mutant of tomato shows enhanced polar auxin transport. Plant Physiol 2003, 133:113-125.
  • [12]Liu CM, Johnson S, Gregorio SD, Wang TL: Single cotyledon(sic) mutants of pea and their significance in understanding plant embryo development. Dev Genet 1999, 25:11-22.
  • [13]Chandler JW: Cotyledon organogenesis. J Exp Biol 2008, 59:2917-2931.
  • [14]Larsson E, Sundström JF, Sitbon F, Arnold SV: Expression of PaNAC01, a picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot 2012, 110:923-934.
  • [15]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 1997, 9:841-857.
  • [16]Roemen CWV, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, De Vries SC: The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 2003, 15:1563-1577.
  • [17]Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF: A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol 2011, 156:1894-1904.
  • [18]Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA: Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408:967-971.
  • [19]Belles-Boix PE, Hamant O, Witiak SM, Morin H, Véronique JT: KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 2006, 18:1900-1907.
  • [20]Oliva M, Farcot E, Vernoux T: Plant hormone signaling during development: insights from computational models. Curr Opin Plant Biol 2013, 16:19-24.
  • [21]Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C: Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 2004, 16:1365-1377.
  • [22]Cheng Y, Dai X, Zhao Y: Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Gene Dev 2006, 20:1790-1799.
  • [23]Cheng Y, Dai X, Zhao Y: Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 2007, 19:2430-2439.
  • [24]Liu CM, Xu ZH, Chua NH: Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 1993, 5:621-630.
  • [25]Ramesar-Fortner NS, Yeung EC: Tri-iodobenzoic acid affects shoot apical meristem formation and function in zygotic embryos of Brassica napus cv. Topas. Ca J Bot 2001, 79:265-273.
  • [26]Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M: PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 2004, 131:5021-5030.
  • [27]Larsson E, Sitbon F, Ljung K, Arnold SV: Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 2008, 177:356-366.
  • [28]Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G: Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003, 426:147-153.
  • [29]Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RAT: The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 2005, 132:4063-4074.
  • [30]Aderkas PV: In vitro phenotypic variation in larch cotyledon number. Int J Plant Sci 2002, 163:301-307.
  • [31]Chaudhury AM, Letham S, Craig S, Dennis E: Amp1: a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 1993, 4:907-916.
  • [32]Banno H, Ikeda Y, Niu QW, Chua NH: Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 2001, 13:2609-2618.
  • [33]Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH: The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 2006, 47:1443-1456.
  • [34]Yu JJ, Han SY, Shi GX, Yu DY: Characterization of a novel curled-cotyledons mutant in soybean [Glycine max (L.) Merr.]. Afr J Biotechnol 2012, 11:14889-14898.
  • [35]West ALM, Harada JJ: Embryogenesis in higher plants. Plant Cell 1993, 5:1361-1369.
  • [36]Vanneste1 S, Friml J: Auxin: a trigger for change in plant development. Cell 2009, 136:1005-1016.
  • [37]Möller B, Weijers D: Auxin control of embryo patterning. Cold Spring Harb Perspect in Biol 2009, 1:a001545.
  • [38]Joint Genome Institute/Phytozome/. http://www.phytozome.net/soybean.php webcite
  • [39]Asakura T, Tamura T, Terauchi K, Naikawa T, Yagasaki K, Ishimaru Y, Abe K: Global gene expression profiles in developing soybean seeds. Plant Physiol Bioch 2012, 52:147-153.
  • [40]Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM: A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 2005, 17:2230-2242.
  • [41]Morino K, Matsuda F, Miyazawa H, Sukegawa A, Miyagawa H, Wakasa K: Metabolic profiling of tryptophan-overproducing rice calli that express a feedback-insensitive α subunit of anthranilate synthase. Plant Cell Physiol 2005, 46:514-521.
  • [42]Mano Y, Nemoto K: The pathway of auxin biosynthesis in plants. J Exp Biol 2012, 63:2853-2872.
  • [43]Abel S, Theologis A: Early genes and auxin action. Plant Physiol 1996, 111:9-17.
  • [44]Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ: Aux/lAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9:1963-1971.
  • [45]Swain SM, Reid JB, Kamiya Y: Gibberellins are required for embryo growth and seed development in pea. Plant J 1997, 12:1329-1338.
  • [46]Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasinoa RM: Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 2003, 15:151-163.
  • [47]Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H: Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 2003, 21:909-913.
  • [48]Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH: Activation tagging of a dominant gibberellin catabolism gene (GA2-oxidase) from poplar that regulates tree stature. Plant Physiol 2003, 132:1283-1291.
  • [49]Martínez-Andújar C, Ordiz MI, Huang ZL, Nonogaki M, Beachy RN, Nonogaki H: Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc Natl Acad Sci U S A 2011, 108:17225-17229.
  • [50]Klingler JP, Batelli G, Zhu JK: ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Biol 2010, 61:3199-3210.
  • [51]Fujii H, Verslues PE, Zhu JK: Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 2011, 108:1717-1722.
  • [52]Merchante C, Alonso JM, Stepanova AN: Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 2013, 16:554-560.
  • [53]Werner T, Schmülling T: Cytokinin action in plant development. Curr Opin Plant Biol 2009, 12:527-538.
  • [54]Ma QH, Wang XM, Wang ZM: Expression of isopentenyl transferase gene controlled by seed-specific lectin promoter in transgenic tobacco influences seed development. J Plant Growth Regul 2008, 27:68-76.
  • [55]Brugière N, Humbert S, Rizzo N, Bohn J, Habben JE: A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Mol Biol 2008, 67:215-229.
  • [56]To JPC, Kieber JJ: Cytokinin signaling: two-components and more. Trends Plant Sci 2008, 13:85-92.
  • [57]Hamilton AJ, Lycett GW, Grierson D: Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 1990, 346:284-287.
  • [58]Chandler JW, Cole M, Flier A, Werr W: BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE. Plant Mol Biol 2009, 69:57-68.
  • [59]Li JM, Jin H: Regulation of brassinosteroid signaling. Trends Plant Sci 2006, 12:37-41.
  • [60]León J, Sánchez-Serrano JJ: Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiol Bioch 1999, 37:373-380.
  • [61]Katsir L, Chung HS, Koo AJK, Howe GA: Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 2008, 11:428-435.
  • [62]Hardtke CS, Depuyd S: Hormone signalling crosstalk in plant growth regulation. Curr Biol 2011, 21:365-373.
  • [63]Jürgens G, Wolters GH: Survival of the flexible: hormonal growth control and adaptation in plant development. Nature 2009, 10:305-317.
  • [64]Chandler JM: Local auxin production: a small contribution to a big field. Bioessays 2009, 31:60-70.
  • [65]Ikeda Y, Men S, Fischer U, Stepanova A, Alonso J, Ljung K: Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 2009, 11:731-738.
  • [66]Petrásek J, Friml J: Auxin transport routes in plant development. Development 2009, 136:2675-2688.
  • [67]Friml J: Auxin transport-shaping the plant. Curr Opin Plant Biol 2003, 6:7-12.
  • [68]Went FW: Reflections and speculations. Annu Rev Plant Physiol 1974, 25:1-26.
  • [69]Tanaka H, Dhonukshe P, Brewer PB, Friml J: Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 2006, 63:2738-2754.
  • [70]Chen RJ, Baluška F, et al.: Regulation of polar auxin transport by protein phosphorylation. In Polar Auxin Transpot. Volume 4. Edited by Martínez . Spain: Universitat Autònoma de Barcelona; 2013:81-101.
  • [71]Chen RJ, Baluška F, et al.: Control of auxin transport by reactive oxygen and nitrogen species. In Polar Auxin Transpot. Volume 5. Edited by Fernández-Marcos . Spain: Universidad de Salamanca; 2013:103-117.
  • [72]Kuhn BM, Gersler M, Bigler L, Ringli C: Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol 2011, 156:585-595.
  • [73]Chen RJ, Baluška F, et al.: Hormonal control of polar auxin transport. In Polar Auxin Transpot. Volume 6. Edited by Sun . China: Chinese Academy of Sciences; 2013:119-133.
  • [74]Holdsworth MJ, Bentsink L, Soppe WJ: Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 2008, 179:33-54.
  • [75]Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C: Gibberellin regulates PIN-FORMED abundance and is required for auxin transport–dependent growth and development in Arabidopsis thaliana. Plant Cell 2011, 23:2184-2195.
  • [76]Frigerio M, Alabadí D, Pérez-Gómez J, García-cárcel L, Phillips AL, Hedden P, Blázquez MA: Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 2006, 142:553-563.
  • [77]Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA: Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 2009, 58:318-332.
  • [78]Yin ZT, Meng FF, Song HN, Wang XL, Xu XM, Yu DY: Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. Plant Physiol 2010, 152:1625-1637.
  • [79]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7:986-995.
  文献评价指标  
  下载次数:38次 浏览次数:8次