期刊论文详细信息
BMC Cancer
Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells
Mohammad Khalid Zakaria3  Imran Khan3  Prashant Mani1  Parthaprasad Chattopadhyay3  Debi P Sarkar1  Subrata Sinha2 
[1] Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110021, India
[2] National Brain Research Centre, Manesar, Gurgaon, Haryana 122050, India
[3] Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
关键词: DNA methylation;    Heterochromatization;    Alpha-fetoprotein;    c-Myc;    shRNA;    Transcriptional gene silencing;    Asialoglycoprotein receptors;    Sendai virosome;    Hepatocellular carcinoma;   
Others  :  1125216
DOI  :  10.1186/1471-2407-14-582
 received in 2014-04-04, accepted in 2014-07-28,  发布年份 2014
PDF
【 摘 要 】

Background

A specific targeting modality for hepatocellular carcinoma (HCC) could ideally encompass a liver cell specific delivery system of a transcriptional unit that is active only in neoplastic cells. Sendai virosomes, derived from Sendai viral envelopes, home to hepatocytes based on the liver specific expression of asialoglycoprotein receptors (ASGPRs) which are recognized by the Sendai virosomal fusion (F) proteins. As reported earlier by us and other groups, transcriptional gene silencing (TGS) does not require continuous presence of the effector siRNA/shRNA molecule and is heritable, involving epigenetic modifications, leading to long term transcriptional repression. This could be advantageous over conventional gene therapy approaches, since continuous c-Myc inactivation is required to suppress hepatocarcinoma cells.

Methods

Exploiting such virosomal delivery, the alpha-fetoprotein (AFP) promoter, in combination with various tumour specific enhancers, was used to drive the expression of shRNA directed against ME1a1 binding site of the proto-oncogene c-Myc P2 promoter, in order to induce TGS in neoplastic liver cells.

Results

The dual specificity achieved by the Sendai virosomal delivery system and the promoter/enhancer guided expression ensured that the shRNA inducing TGS was active only in liver cells that had undergone malignant transformation. Our results indicate that such a bimodal therapeutic system induced specific activation of apoptosis in hepatocarcinoma cells due to heterochromatization and increased DNA methylation of the CpG islands around the target loci.

Conclusions

The Sendai virosomal delivery system, combined with AFP promoter/enhancer expression machinery, could serve as a generalized mechanism for the expression of genes deleterious to transformed hepatocarcinoma cells. In this system, the epigenetic suppression of c-Myc could have an added advantage for inducing cell death in the targeted cells.

【 授权许可】

   
2014 Zakaria et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150217012027494.pdf 2272KB PDF download
Figure 8. 167KB Image download
Figure 7. 107KB Image download
Figure 6. 125KB Image download
Figure 5. 94KB Image download
Figure 4. 115KB Image download
Figure 3. 192KB Image download
Figure 2. 132KB Image download
Figure 1. 91KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Forner A, Llovet JM, Bruix J: Hepatocellular carcinoma. Lancet 2012, 379:1245-1255.
  • [2]Ali M, Sahib MK: Developmental changes in the expression of alpha-fetoprotein & albumin genes in rat liver: correlation of rates of synthesis of the two proteins in the hepatocytes, their hepatic contents & serum levels during development. Indian J Biochem Biophys 1983, 20:218-221.
  • [3]Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004, 32:e149.
  • [4]Tang Q, Cao B, Wu H, Cheng G: Selective gene delivery to cancer cells using an integrated cationic amphiphilic peptide. Langmuir ACS J Surf Colloids 2012, 28:16126-16132.
  • [5]Lee J, Yun K-S, Choi CS, Shin S-H, Ban H-S, Rhim T, Lee SK, Lee KY: T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem 2012, 23:1174-1180.
  • [6]Kim S-H, Yang I-Y, Jang S-H, Kim J, Truong TT, Van Pham T, Truong NU, Lee K-Y, Jang Y-S: C5a receptor-targeting ligand-mediated delivery of dengue virus antigen to M cells evokes antigen-specific systemic and mucosal immune responses in oral immunization. Microbes Infect Inst Pasteur 2013, 15:895-902.
  • [7]Han L, Guo Y, Ma H, He X, Kuang Y, Zhang N, Lim E, Zhou W, Jiang C: Acid active receptor-specific Peptide ligand for in vivo tumor-targeted delivery. Small Weinh Bergstr Ger 2013, 9:3647-3658.
  • [8]Du W, Fan Y, Zheng N, He B, Yuan L, Zhang H, Wang X, Wang J, Zhang X, Zhang Q: Transferrin receptor specific nanocarriers conjugated with functional 7peptide for oral drug delivery. Biomaterials 2013, 34:794-806.
  • [9]Li H, Qian ZM: Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002, 22:225-250.
  • [10]Qian ZM, Li H, Sun H, Ho K: Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002, 54:561-587.
  • [11]Zhao X, Li H, Lee RJ: Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008, 5:309-319.
  • [12]Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB: Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009, 5:31-42.
  • [13]Yao Y, Sun T, Huang S, Dou S, Lin L, Chen J, Ruan J, Mao C, Yu F, Zeng M, Zang J, Liu Q, Su F, Zhang P, Lieberman J, Wang J, Song E: Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci Transl Med 2012, 4:130ra48.
  • [14]Bagai S, Puri A, Blumenthal R, Sarkar DP: Hemagglutinin-neuraminidase enhances F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells. J Virol 1993, 67:3312-3318.
  • [15]Wang X, Sarkar DP, Mani P, Steer CJ, Chen Y, Guha C, Chandrasekhar V, Chaudhuri A, Roy-Chowdhury N, Kren BT, Roy-Chowdhury J: Long-term reduction of jaundice in gunn rats by nonviral liver-targeted delivery of sleeping beauty transposon. Hepatol Baltim Md 2009, 50:815-824.
  • [16]Verma SK, Mani P, Sharma NR, Krishnan A, Kumar VV, Reddy BS, Chaudhuri A, Roy RP, Sarkar DP: Histidylated lipid-modified Sendai viral envelopes mediate enhanced membrane fusion and potentiate targeted gene delivery. J Biol Chem 2005, 280:35399-35409.
  • [17]Sharma NR, Mani P, Nandwani N, Mishra R, Rana A, Sarkar DP: Reciprocal regulation of AKT and MAP kinase dictates virus-host cell fusion. J Virol 2010, 84:4366-4382.
  • [18]Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B: Gene transfer: the challenge of regulated gene expression. Trends Mol Med 2008, 14:410-418.
  • [19]Robson T, Hirst DG: Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol 2003, 2003:110-137.
  • [20]Grünwald GK, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Göke B, Holm PS, Spitzweg C: Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther 2013, 20:625-633.
  • [21]Zhang K-J, Zhang J, Wu Y-M, Qian J, Liu X-J, Yan L-C, Zhou X-M, Xiao R-J, Wang Y-G, Cao X, Wei N, Liu X-R, Tang B, Jiao X-Y, Chen K, Liu X-Y: Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Ther 2012, 19:619-629.
  • [22]Peng Y-F, Shi Y-H, Ding Z-B, Zhou J, Qiu S-J, Hui B, Gu C-Y, Yang H, Liu W-R, Fan J: Alpha-fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy. PLoS One 2013, 8:e53072.
  • [23]Qiao J, Doubrovin M, Sauter BV, Huang Y, Guo ZS, Balatoni J, Akhurst T, Blasberg RG, Tjuvajev JG, Chen S-H, Woo SLC: Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002, 9:168-175.
  • [24]Groupp ER, Crawford N, Locker J: Characterization of the distal alpha-fetoprotein enhancer, a strong, long distance, liver-specific activator. J Biol Chem 1994, 269:22178-22187.
  • [25]Watanabe K, Saito A, Tamaoki T: Cell-specific enhancer activity in a far upstream region of the human alpha-fetoprotein gene. J Biol Chem 1987, 262:4812-4818.
  • [26]Wierstra I, Alves J: The c-myc promoter: still MysterY and challenge. Adv Cancer Res 2008, 99:113-333.
  • [27]Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche A-C, Knabenhans C, MacDonald HR, Trumpp A: c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004, 18:2747-2763.
  • [28]Davis AC, Wims M, Spotts GD, Hann SR, Bradley A: A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 1993, 7:671-682.
  • [29]Mateyak MK, Obaya AJ, Adachi S, Sedivy JM: Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 1997, 8:1039-1048.
  • [30]Ebinuma H, Saito H, Saito Y, Wakabayashi K, Nakamura M, Kurose I, Ishii H: Antisense oligodeoxynucleotide against c-myc mRNA induces differentiation of human hepatocellular carcinoma cells. Int J Oncol 1999, 15:991-999.
  • [31]Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW: MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004, 431:1112-1117.
  • [32]Xu Y, Wang Y-H, Gao J-D, Ye J, Zhu H-X, Xu N-Z, Wang X-Y, Sun Z-T: Suppression of c-myc expression by interference RNA in HepG2 hepatocellular carcinoma cells. Zhonghua Zhong Liu Za Zhi 2004, 26:458-460.
  • [33]Albert T, Wells J, Funk JO, Pullner A, Raschke EE, Stelzer G, Meisterernst M, Farnham PJ, Eick D: The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J Biol Chem 2001, 276:20482-20490.
  • [34]Mehndiratta M, Palanichamy JK, Pal A, Bhagat M, Singh A, Sinha S, Chattopadhyay P: CpG hypermethylation of the C-myc promoter by dsRNA results in growth suppression. Mol Pharm 2011, 8:2302-2309.
  • [35]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
  • [36]Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293-296.
  • [37]Morris KV, Chan SW-L, Jacobsen SE, Looney DJ: Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305:1289-1292.
  • [38]Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD: Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J Biol Chem 2008, 283:23353-23363.
  • [39]Hawkins PG, Santoso S, Adams C, Anest V, Morris KV: Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 2009, 37:2984-2995.
  • [40]Kim DH, Villeneuve LM, Morris KV, Rossi JJ: Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 2006, 13:793-797.
  • [41]Morris KV: Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol 2009, 6:242-247.
  • [42]Giering JC, Grimm D, Storm TA, Kay MA: Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther J Am Soc Gene Ther 2008, 16:1630-1636.
  • [43]Arsura M, Cavin LG: Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett 2005, 229:157-169.
  • [44]Kanai F: Transcriptional targeted gene therapy for hepatocellular carcinoma by adenovirus vector. Mol Biotechnol 2001, 18:243-250.
  • [45]Pranski EL, Dalal NV, Herskowitz JH, Orr AL, Roesch LA, Fritz JJ, Heilman C, Lah JJ, Levey AI, Betarbet RS: Neuronal RING finger protein 11 (RNF11) regulates canonical NF-κB signaling. J Neuroinflammation 2012, 9:67.
  • [46]Xia H, Mao Q, Paulson HL, Davidson BL: siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002, 20:1006-1010.
  • [47]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
  • [48]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30:e36.
  • [49]Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M: Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 2007, 3:11.
  • [50]Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BRG: Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003, 5:834-839.
  • [51]Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 2004, 101:1892-1897.
  • [52]Napoli S, Pastori C, Magistri M, Carbone GM, Catapano CV: Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. EMBO J 2009, 28:1708-1719.
  • [53]Singh A, Palanichamy JK, Ramalingam P, Kassab MA, Bhagat M, Andrabi R, Luthra K, Sinha S, Chattopadhyay P: Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA. J Antimicrob Chemother 2014, 69:404-415.
  • [54]Lin C-P, Liu C-R, Lee C-N, Chan T-S, Liu HE: Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J Hepatol 2010, 2:16-20.
  • [55]Cai X, Zhou J, Chang Y, Sun X, Li P, Lin J: Targeting gene therapy for hepatocarcinoma cells with the E. coli purine nucleoside phosphorylase suicide gene system directed by a chimeric alpha-fetoprotein promoter. Cancer Lett 2008, 264:71-82.
  • [56]Cao G, Kuriyama S, Tsujinoue H, Chen Q, Mitoro A, Qi Z: A novel approach for inducing enhanced and selective transgene expression in hepatocellular-carcinoma cells. Int J Cancer 2000, 87:247-252.
  • [57]Cao G, Kuriyama S, Gao J, Nakatani T, Chen Q, Yoshiji H, Zhao L, Kojima H, Dong Y, Fukui H, Hou J: Gene therapy for hepatocellular carcinoma based on tumour-selective suicide gene expression using the alpha-fetoprotein (AFP) enhancer and a housekeeping gene promoter. Eur J Cancer Oxf Engl 1990 2001, 37:140-147.
  • [58]Kanai F, Lan KH, Shiratori Y, Tanaka T, Ohashi M, Okudaira T, Yoshida Y, Wakimoto H, Hamada H, Nakabayashi H, Tamaoki T, Omata M: In vivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res 1997, 57:461-465.
  • [59]Willhauck MJ, Sharif Samani BR, Klutz K, Cengic N, Wolf I, Mohr L, Geissler M, Senekowitsch-Schmidtke R, Göke B, Morris JC, Spitzweg C: Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther 2008, 15:214-223.
  • [60]Ho JSL, Ma W, Mao DYL, Benchimol S: p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 2005, 25:7423-7431.
  • [61]Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR: Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 1997, 99:403-413.
  • [62]Wei W, Chua M-S, Grepper S, So SK: Soluble Frizzled-7 receptor inhibits Wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Mol Cancer 2011, 10:16.
  • [63]Robinson R: RNAi therapeutics: how likely, how soon? PLoS Biol 2004, 2:e28.
  • [64]Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R: Direct activation of TERT transcription by c-MYC. Nat Genet 1999, 21:220-224.
  • [65]Jänicke RU, Lin XY, Lee FH, Porter AG: Cyclin D3 sensitizes tumor cells to tumor necrosis factor-induced, c-Myc-dependent apoptosis. Mol Cell Biol 1996, 16:5245-5253.
  • [66]Jang KY, Noh SJ, Lehwald N, Tao G-Z, Bellovin DI, Park HS, Moon WS, Felsher DW, Sylvester KG: SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One 2012, 7:e45119.
  • [67]Gonzalez S, Pisano DG, Serrano M: Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle Georget Tex 2008, 7:2601-2608.
  • [68]Palanichamy JK, Mehndiratta M, Bhagat M, Ramalingam P, Das B, Das P, Sinha S, Chattopadhyay P: Silencing of integrated human papillomavirus-16 oncogenes by small interfering RNA-mediated heterochromatization. Mol Cancer Ther 2010, 9:2114-2122.
  • [69]Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen Z-X, Riggs AD, Rossi JJ, Morris KV: The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA N Y N 2006, 12:256-262.
  • [70]Hoffman AR, Hu JF: Directing DNA methylation to inhibit gene expression. Cell Mol Neurobiol 2006, 26:425-438.
  • [71]Tufarelli C, Stanley JAS, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR: Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003, 34:157-165.
  • [72]Civenni G, Malek A, Albino D, Garcia-Escudero R, Napoli S, Di Marco S, Pinton S, Sarti M, Carbone GM, Catapano CV: RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res 2013, 73:6816-6827.
  • [73]Lin C-P, Liu J-D, Chow J-M, Liu C-R, Liu HE: Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anticancer Drugs 2007, 18:161-170.
  • [74]Morris KV: Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells. Epigenetics Off J DNA Methylation Soc 2009, 4:296-301.
  文献评价指标  
  下载次数:43次 浏览次数:10次