BMC Microbiology | |
Synergies between RNA degradation and trans-translation in Streptococcus pneumoniae: cross regulation and co-transcription of RNase R and SmpB | |
Cecília M Arraiano1  Mónica Amblar2  Sandra C Viegas1  Susana Domingues1  Ricardo N Moreira1  | |
[1] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal;Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III. Majadahonda, Madrid, 28220, Spain | |
关键词: Non-stop RNA decay; Transcriptional unit; Quality control; Post-transcriptional control; RNA turnover; | |
Others : 1145029 DOI : 10.1186/1471-2180-12-268 |
|
received in 2012-07-19, accepted in 2012-10-31, 发布年份 2012 |
【 摘 要 】
Background
Ribonuclease R (RNase R) is an exoribonuclease that recognizes and degrades a wide range of RNA molecules. It is a stress-induced protein shown to be important for the establishment of virulence in several pathogenic bacteria. RNase R has also been implicated in the trans-translation process. Transfer-messenger RNA (tmRNA/SsrA RNA) and SmpB are the main effectors of trans-translation, an RNA and protein quality control system that resolves challenges associated with stalled ribosomes on non-stop mRNAs. Trans-translation has also been associated with deficiencies in stress-response mechanisms and pathogenicity.
Results
In this work we study the expression of RNase R in the human pathogen Streptococcus pneumoniae and analyse the interplay of this enzyme with the main components of the trans-translation machinery (SmpB and tmRNA/SsrA). We show that RNase R is induced after a 37°C to 15°C temperature downshift and that its levels are dependent on SmpB. On the other hand, our results revealed a strong accumulation of the smpB transcript in the absence of RNase R at 15°C. Transcriptional analysis of the S. pneumoniae rnr gene demonstrated that it is co-transcribed with the flanking genes, secG and smpB. Transcription of these genes is driven from a promoter upstream of secG and the transcript is processed to yield mature independent mRNAs. This genetic organization seems to be a common feature of Gram positive bacteria, and the biological significance of this gene cluster is further discussed.
Conclusions
This study unravels an additional contribution of RNase R to the trans-translation system by demonstrating that smpB is regulated by this exoribonuclease. RNase R in turn, is shown to be under the control of SmpB. These proteins are therefore mutually dependent and cross-regulated. The data presented here shed light on the interactions between RNase R, trans-translation and cold-shock response in an important human pathogen.
【 授权许可】
2012 Moreira et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 5. | 45KB | Image | download |
Figure 4. | 65KB | Image | download |
Figure 3. | 49KB | Image | download |
Figure 2. | 35KB | Image | download |
Figure 1. | 57KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM: Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA 2011, 2(6):818-836.
- [2]Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, et al.: The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010, 34(5):883-923.
- [3]Arraiano CM, Maquat LE: Post-transcriptional control of gene expression: effectors of mRNA decay. Mol Microbiol 2003, 49:267-276.
- [4]Cheng ZF, Deutscher MP: Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 2002, 277(24):21624-21629.
- [5]Grossman D, van Hoof A: RNase II structure completes group portrait of 3' exoribonucleases. Nat Struct Mol Biol 2006, 13(9):760-761.
- [6]Zuo Y, Deutscher MP: Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001, 29(5):1017-1026.
- [7]Matos RG, Pobre V, Reis FP, Malecki M, Andrade JM, Arraiano CM: Structure and degradation mechanisms of 3’ to 5’ exoribonucleases. In Ribonucleases, Nucleic Acids and Molecular Biology. Edited by Nicholson AW. Berlin: Springer; 2011:193-222.
- [8]Condon C, Putzer H: The phylogenetic distribution of bacterial ribonucleases. Nucl Acid Res 2002, 30(24):5339-5346.
- [9]Fonseca P, Moreno R, Rojo F: Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs. J Bacteriol 2008, 190(18):6258-6263.
- [10]Lalonde MS, Zuo Y, Zhang J, Gong X, Wu S, Malhotra A, Li Z: Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA 2007, 13(11):1957-1968.
- [11]Andrade JM, Cairrao F, Arraiano CM: RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 2006, 60(1):219-228.
- [12]Cairrão F, Cruz A, Mori H, Arraiano CM: Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 2003, 50:1349-1360.
- [13]Cheng ZF, Deutscher MP: Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc Natl Acad Sci U S A 2003, 100(11):6388-6393.
- [14]Oussenko IA, Abe T, Ujiie H, Muto A, Bechhofer DH: Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 2005, 187(8):2758-2767.
- [15]Andrade JM, Hajnsdorf E, Regnier P, Arraiano CM: The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 2009, 15(2):316-326.
- [16]Cheng ZF, Deutscher MP: An important role for RNase R in mRNA decay. Mol Cell 2005, 17(2):313-318.
- [17]Chen C, Deutscher MP: Elevation of RNase R in response to multiple stress conditions. J Biol Chem 2005, 280(41):34393-34396.
- [18]Erova TE, Kosykh VG, Fadl AA, Sha J, Horneman AJ, Chopra AK: Cold shock exoribonuclease R (VacB) is involved in Aeromonas hydrophila pathogenesis. J Bacteriol 2008, 190(10):3467-3474.
- [19]Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP: The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem 1998, 273(23):14077-14080.
- [20]Tobe T, Sasakawa C, Okada N, Honma Y, Yoshikawa M: vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol 1992, 174(20):6359-6367.
- [21]Tsao MY, Lin TL, Hsieh PF, Wang JT: The 3'-to-5' exoribonuclease (encoded by HP1248) of Helicobacter pylori regulates motility and apoptosis-inducing genes. J Bacteriol 2009, 191(8):2691-2702.
- [22]Campos-Guillen J, Arvizu-Gomez JL, Jones GH, Olmedo-Alvarez G: Characterization of tRNA(Cys) processing in a conditional Bacillus subtilis CCase mutant reveals the participation of RNase R in its quality control. Microbiology 2010, 156(Pt 7):2102-2111.
- [23]Hong SJ, Tran QA, Keiler KC: Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol 2005, 57(2):565-575.
- [24]Purusharth RI, Madhuri B, Ray MK: Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3' end processing of 16 and 5 S ribosomal RNA. J Biol Chem 2007, 282(22):16267-16277.
- [25]Richards J, Sundermeier T, Svetlanov A, Karzai AW: Quality control of bacterial mRNA decoding and decay. Biochim Biophys Acta 2008, 1779(9):574-582.
- [26]Keiler KC: Biology of trans-translation. Annu Rev Microbiol 2008, 62:133-151.
- [27]Richards J, Mehta P, Karzai AW: RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol Microbiol 2006, 62(6):1700-1712.
- [28]Liang W, Deutscher MP: A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J Biol Chem 2010, 285(38):29054-29058.
- [29]Liang W, Malhotra A, Deutscher MP: Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol Cell 2011, 44(1):160-166.
- [30]Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM: The role of 3'-5' exoribonucleases in RNA degradation. Prog Mol Biol Transl Sci 2009, 85:187-229.
- [31]Acebo P, Martin-Galiano AJ, Navarro S, Zaballos A, Amblar M: Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA 2012, 18(3):530-546.
- [32]Wagner EG, Vogel J: Approaches to Identify Novel Non-messenger RNAs in Bacteria and to Investigate their Biological Functions: Functional Analysis of Identified Non-mRNAs. In Handbook of RNA Biochemistry. Edited by Hartmann RK, Bindereif A, Schõn A, Westhof E. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2005:614-642.
- [33]Charpentier X, Faucher SP, Kalachikov S, Shuman HA: Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 2008, 190(24):8126-8136.
- [34]Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B: Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 2006, 188(11):4079-4092.
- [35]Barends S, Kraal B, van Wezel GP: The tmRNA-tagging mechanism and the control of gene expression: a review. Wiley Interdiscip Rev RNA 2011, 2(2):233-246.
- [36]Svetlanov A, Puri N, Mena P, Koller A, Karzai AW: Francisella tularensis tmRNA system mutants are vulnerable to stress, avirulent in mice, and provide effective immune protection. Mol Microbiol 2012, 85(1):122-141.
- [37]Cairrão F, Chora A, Zilhão R, Carpousis J, Arraiano CM: RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol Microbiol 2001, 276:19172-19181.
- [38]Ge Z, Mehta P, Richards J, Karzai AW: Non-stop mRNA decay initiates at the ribosome. Mol Microbiol 2010, 78(5):1159-1170.
- [39]Karzai AW, Sauer RT: Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc Natl Acad Sci U S A 2001, 98(6):3040-3044.
- [40]Overbeek R, Larsen N, Pusch GD, D'Souza M, Selkov E Jr, Kyrpides N, Fonstein M, Maltsev N, Selkov E: WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 2000, 28(1):123-125.
- [41]Driessen AJ, Nouwen N: Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008, 77:643-667.
- [42]Papanikou E, Karamanou S, Economou A: Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 2007, 5(11):839-851.
- [43]du Plessis DJ, Nouwen N, Driessen AJ: The Sec translocase. Biochim Biophys Acta 2011, 1808(3):851-865.
- [44]Hayes CS, Keiler KC: Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett 2010, 584(2):413-419.
- [45]Ruhe ZC, Hayes CS: The N-terminus of GalE induces tmRNA activity in Escherichia coli. PLoS One 2010, 5(12):e15207.
- [46]Keiler KC: Physiology of tmRNA: what gets tagged and why? Curr Opin Microbiol 2007, 10(2):169-175.
- [47]van Stelten J, Silva F, Belin D, Silhavy TJ: Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 2009, 325(5941):753-756.
- [48]Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Muller JP, Bron S, Kok J, et al.: Subcellular sites for bacterial protein export. Mol Microbiol 2004, 53(6):1583-1599.
- [49]Russell JH, Keiler KC: Subcellular localization of a bacterial regulatory RNA. Proc Natl Acad Sci U S A 2009, 106(38):16405-16409.
- [50]Shiomi D, Yoshimoto M, Homma M, Kawagishi I: Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 2006, 60(4):894-906.
- [51]Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, et al.: Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001, 293(5529):498-506.
- [52]Taylor RG, Walker DC, McInnes RR: E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 1993, 21(7):1677-1678.
- [53]Studier FW, Moffatt BA: Selective expression of cloned genes directed by T7 RNA polymease. J Mol Biol 1986, 189:113-130.
- [54]Domingues S, Matos RG, Reis FP, Fialho AM, Barbas A, Arraiano CM: Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Biochemistry 2009, 48(50):11848-11857.
- [55]Song JH, Ko KS, Lee JY, Baek JY, Oh WS, Yoon HS, Jeong JY, Chun J: Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 2005, 19(3):365-374.
- [56]Sung CK, Li H, Claverys JP, Morrison DA: An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 2001, 67(11):5190-5196.
- [57]Fernandez de Palencia P, Nieto C, Acebo P, Espinosa M, Lopez P: Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiol Lett 2000, 183(2):229-234.
- [58]Simon D, Chopin A: Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 1988, 70(4):559-566.
- [59]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
- [60]Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM: Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007, 35(22):7651-7664.
- [61]Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S: Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 2001, 11(12):941-950.
- [62]Haider SR, Reid HJ, Sharp BL: Modification of tricine-SDS-PAGE for online and offline analysis of phosphoproteins by ICP-MS. Anal Bioanal Chem 2010, 397(2):655-664.
- [63]Reese MG: Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001, 26(1):51-56.