期刊论文详细信息
BMC Microbiology
Synergies between RNA degradation and trans-translation in Streptococcus pneumoniae: cross regulation and co-transcription of RNase R and SmpB
Cecília M Arraiano1  Mónica Amblar2  Sandra C Viegas1  Susana Domingues1  Ricardo N Moreira1 
[1] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal;Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III. Majadahonda, Madrid, 28220, Spain
关键词: Non-stop RNA decay;    Transcriptional unit;    Quality control;    Post-transcriptional control;    RNA turnover;   
Others  :  1145029
DOI  :  10.1186/1471-2180-12-268
 received in 2012-07-19, accepted in 2012-10-31,  发布年份 2012
【 摘 要 】

Background

Ribonuclease R (RNase R) is an exoribonuclease that recognizes and degrades a wide range of RNA molecules. It is a stress-induced protein shown to be important for the establishment of virulence in several pathogenic bacteria. RNase R has also been implicated in the trans-translation process. Transfer-messenger RNA (tmRNA/SsrA RNA) and SmpB are the main effectors of trans-translation, an RNA and protein quality control system that resolves challenges associated with stalled ribosomes on non-stop mRNAs. Trans-translation has also been associated with deficiencies in stress-response mechanisms and pathogenicity.

Results

In this work we study the expression of RNase R in the human pathogen Streptococcus pneumoniae and analyse the interplay of this enzyme with the main components of the trans-translation machinery (SmpB and tmRNA/SsrA). We show that RNase R is induced after a 37°C to 15°C temperature downshift and that its levels are dependent on SmpB. On the other hand, our results revealed a strong accumulation of the smpB transcript in the absence of RNase R at 15°C. Transcriptional analysis of the S. pneumoniae rnr gene demonstrated that it is co-transcribed with the flanking genes, secG and smpB. Transcription of these genes is driven from a promoter upstream of secG and the transcript is processed to yield mature independent mRNAs. This genetic organization seems to be a common feature of Gram positive bacteria, and the biological significance of this gene cluster is further discussed.

Conclusions

This study unravels an additional contribution of RNase R to the trans-translation system by demonstrating that smpB is regulated by this exoribonuclease. RNase R in turn, is shown to be under the control of SmpB. These proteins are therefore mutually dependent and cross-regulated. The data presented here shed light on the interactions between RNase R, trans-translation and cold-shock response in an important human pathogen.

【 授权许可】

   
2012 Moreira et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 5. 45KB Image download
Figure 4. 65KB Image download
Figure 3. 49KB Image download
Figure 2. 35KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM: Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA 2011, 2(6):818-836.
  • [2]Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, et al.: The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010, 34(5):883-923.
  • [3]Arraiano CM, Maquat LE: Post-transcriptional control of gene expression: effectors of mRNA decay. Mol Microbiol 2003, 49:267-276.
  • [4]Cheng ZF, Deutscher MP: Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 2002, 277(24):21624-21629.
  • [5]Grossman D, van Hoof A: RNase II structure completes group portrait of 3' exoribonucleases. Nat Struct Mol Biol 2006, 13(9):760-761.
  • [6]Zuo Y, Deutscher MP: Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001, 29(5):1017-1026.
  • [7]Matos RG, Pobre V, Reis FP, Malecki M, Andrade JM, Arraiano CM: Structure and degradation mechanisms of 3’ to 5’ exoribonucleases. In Ribonucleases, Nucleic Acids and Molecular Biology. Edited by Nicholson AW. Berlin: Springer; 2011:193-222.
  • [8]Condon C, Putzer H: The phylogenetic distribution of bacterial ribonucleases. Nucl Acid Res 2002, 30(24):5339-5346.
  • [9]Fonseca P, Moreno R, Rojo F: Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs. J Bacteriol 2008, 190(18):6258-6263.
  • [10]Lalonde MS, Zuo Y, Zhang J, Gong X, Wu S, Malhotra A, Li Z: Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA 2007, 13(11):1957-1968.
  • [11]Andrade JM, Cairrao F, Arraiano CM: RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 2006, 60(1):219-228.
  • [12]Cairrão F, Cruz A, Mori H, Arraiano CM: Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 2003, 50:1349-1360.
  • [13]Cheng ZF, Deutscher MP: Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc Natl Acad Sci U S A 2003, 100(11):6388-6393.
  • [14]Oussenko IA, Abe T, Ujiie H, Muto A, Bechhofer DH: Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 2005, 187(8):2758-2767.
  • [15]Andrade JM, Hajnsdorf E, Regnier P, Arraiano CM: The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 2009, 15(2):316-326.
  • [16]Cheng ZF, Deutscher MP: An important role for RNase R in mRNA decay. Mol Cell 2005, 17(2):313-318.
  • [17]Chen C, Deutscher MP: Elevation of RNase R in response to multiple stress conditions. J Biol Chem 2005, 280(41):34393-34396.
  • [18]Erova TE, Kosykh VG, Fadl AA, Sha J, Horneman AJ, Chopra AK: Cold shock exoribonuclease R (VacB) is involved in Aeromonas hydrophila pathogenesis. J Bacteriol 2008, 190(10):3467-3474.
  • [19]Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP: The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem 1998, 273(23):14077-14080.
  • [20]Tobe T, Sasakawa C, Okada N, Honma Y, Yoshikawa M: vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol 1992, 174(20):6359-6367.
  • [21]Tsao MY, Lin TL, Hsieh PF, Wang JT: The 3'-to-5' exoribonuclease (encoded by HP1248) of Helicobacter pylori regulates motility and apoptosis-inducing genes. J Bacteriol 2009, 191(8):2691-2702.
  • [22]Campos-Guillen J, Arvizu-Gomez JL, Jones GH, Olmedo-Alvarez G: Characterization of tRNA(Cys) processing in a conditional Bacillus subtilis CCase mutant reveals the participation of RNase R in its quality control. Microbiology 2010, 156(Pt 7):2102-2111.
  • [23]Hong SJ, Tran QA, Keiler KC: Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol 2005, 57(2):565-575.
  • [24]Purusharth RI, Madhuri B, Ray MK: Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3' end processing of 16 and 5 S ribosomal RNA. J Biol Chem 2007, 282(22):16267-16277.
  • [25]Richards J, Sundermeier T, Svetlanov A, Karzai AW: Quality control of bacterial mRNA decoding and decay. Biochim Biophys Acta 2008, 1779(9):574-582.
  • [26]Keiler KC: Biology of trans-translation. Annu Rev Microbiol 2008, 62:133-151.
  • [27]Richards J, Mehta P, Karzai AW: RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol Microbiol 2006, 62(6):1700-1712.
  • [28]Liang W, Deutscher MP: A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J Biol Chem 2010, 285(38):29054-29058.
  • [29]Liang W, Malhotra A, Deutscher MP: Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol Cell 2011, 44(1):160-166.
  • [30]Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM: The role of 3'-5' exoribonucleases in RNA degradation. Prog Mol Biol Transl Sci 2009, 85:187-229.
  • [31]Acebo P, Martin-Galiano AJ, Navarro S, Zaballos A, Amblar M: Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA 2012, 18(3):530-546.
  • [32]Wagner EG, Vogel J: Approaches to Identify Novel Non-messenger RNAs in Bacteria and to Investigate their Biological Functions: Functional Analysis of Identified Non-mRNAs. In Handbook of RNA Biochemistry. Edited by Hartmann RK, Bindereif A, Schõn A, Westhof E. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2005:614-642.
  • [33]Charpentier X, Faucher SP, Kalachikov S, Shuman HA: Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 2008, 190(24):8126-8136.
  • [34]Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B: Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 2006, 188(11):4079-4092.
  • [35]Barends S, Kraal B, van Wezel GP: The tmRNA-tagging mechanism and the control of gene expression: a review. Wiley Interdiscip Rev RNA 2011, 2(2):233-246.
  • [36]Svetlanov A, Puri N, Mena P, Koller A, Karzai AW: Francisella tularensis tmRNA system mutants are vulnerable to stress, avirulent in mice, and provide effective immune protection. Mol Microbiol 2012, 85(1):122-141.
  • [37]Cairrão F, Chora A, Zilhão R, Carpousis J, Arraiano CM: RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol Microbiol 2001, 276:19172-19181.
  • [38]Ge Z, Mehta P, Richards J, Karzai AW: Non-stop mRNA decay initiates at the ribosome. Mol Microbiol 2010, 78(5):1159-1170.
  • [39]Karzai AW, Sauer RT: Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc Natl Acad Sci U S A 2001, 98(6):3040-3044.
  • [40]Overbeek R, Larsen N, Pusch GD, D'Souza M, Selkov E Jr, Kyrpides N, Fonstein M, Maltsev N, Selkov E: WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 2000, 28(1):123-125.
  • [41]Driessen AJ, Nouwen N: Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008, 77:643-667.
  • [42]Papanikou E, Karamanou S, Economou A: Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 2007, 5(11):839-851.
  • [43]du Plessis DJ, Nouwen N, Driessen AJ: The Sec translocase. Biochim Biophys Acta 2011, 1808(3):851-865.
  • [44]Hayes CS, Keiler KC: Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett 2010, 584(2):413-419.
  • [45]Ruhe ZC, Hayes CS: The N-terminus of GalE induces tmRNA activity in Escherichia coli. PLoS One 2010, 5(12):e15207.
  • [46]Keiler KC: Physiology of tmRNA: what gets tagged and why? Curr Opin Microbiol 2007, 10(2):169-175.
  • [47]van Stelten J, Silva F, Belin D, Silhavy TJ: Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 2009, 325(5941):753-756.
  • [48]Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Muller JP, Bron S, Kok J, et al.: Subcellular sites for bacterial protein export. Mol Microbiol 2004, 53(6):1583-1599.
  • [49]Russell JH, Keiler KC: Subcellular localization of a bacterial regulatory RNA. Proc Natl Acad Sci U S A 2009, 106(38):16405-16409.
  • [50]Shiomi D, Yoshimoto M, Homma M, Kawagishi I: Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 2006, 60(4):894-906.
  • [51]Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, et al.: Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001, 293(5529):498-506.
  • [52]Taylor RG, Walker DC, McInnes RR: E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 1993, 21(7):1677-1678.
  • [53]Studier FW, Moffatt BA: Selective expression of cloned genes directed by T7 RNA polymease. J Mol Biol 1986, 189:113-130.
  • [54]Domingues S, Matos RG, Reis FP, Fialho AM, Barbas A, Arraiano CM: Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Biochemistry 2009, 48(50):11848-11857.
  • [55]Song JH, Ko KS, Lee JY, Baek JY, Oh WS, Yoon HS, Jeong JY, Chun J: Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 2005, 19(3):365-374.
  • [56]Sung CK, Li H, Claverys JP, Morrison DA: An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 2001, 67(11):5190-5196.
  • [57]Fernandez de Palencia P, Nieto C, Acebo P, Espinosa M, Lopez P: Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiol Lett 2000, 183(2):229-234.
  • [58]Simon D, Chopin A: Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 1988, 70(4):559-566.
  • [59]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [60]Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM: Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007, 35(22):7651-7664.
  • [61]Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S: Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 2001, 11(12):941-950.
  • [62]Haider SR, Reid HJ, Sharp BL: Modification of tricine-SDS-PAGE for online and offline analysis of phosphoproteins by ICP-MS. Anal Bioanal Chem 2010, 397(2):655-664.
  • [63]Reese MG: Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001, 26(1):51-56.
  文献评价指标  
  下载次数:23次 浏览次数:10次