期刊论文详细信息
BMC Genomics
Genome-wide variations in a natural isolate of the nematode Caenorhabditis elegans
Nansheng Chen2  Ke Wang2  Jeffrey SC Chu1  Rong She2  Ting Zhang1  Zhaozhao Qin1  Jun Wang1  Christian Frech1  Maja Tarailo-Graovac1  Ismael A Vergara1 
[1] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada;School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
关键词: Compound variation;    Large insertion;    Loss-of-function;    Genomic variation;    Next-generation DNA sequencing;    Natural isolate strain;    C. elegans;   
Others  :  1217563
DOI  :  10.1186/1471-2164-15-255
 received in 2013-06-29, accepted in 2014-03-03,  发布年份 2014
PDF
【 摘 要 】

Background

Increasing genetic and phenotypic differences found among natural isolates of C. elegans have encouraged researchers to explore the natural variation of this nematode species.

Results

Here we report on the identification of genomic differences between the reference strain N2 and the Hawaiian strain CB4856, one of the most genetically distant strains from N2. To identify both small- and large-scale genomic variations (GVs), we have sequenced the CB4856 genome using both Roche 454 (~400 bps single reads) and Illumina GA DNA sequencing methods (101 bps paired-end reads). Compared to previously described variants (available in WormBase), our effort uncovered twice as many single nucleotide variants (SNVs) and increased the number of small InDels almost 20-fold. Moreover, we identified and validated large insertions, most of which range from 150 bps to 1.2 kb in length in the CB4856 strain. Identified GVs had a widespread impact on protein-coding sequences, including 585 single-copy genes that have associated severe phenotypes of reduced viability in RNAi and genetics studies. Sixty of these genes are homologs of human genes associated with diseases. Furthermore, our work confirms previously identified GVs associated with differences in behavioural and biological traits between the N2 and CB4856 strains.

Conclusions

The identified GVs provide a rich resource for future studies that aim to explain the genetic basis for other trait differences between the N2 and CB4856 strains.

【 授权许可】

   
2014 Vergara et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707060349958.pdf 2709KB PDF download
Figure 11. 42KB Image download
Figure 10. 52KB Image download
Figure 9. 65KB Image download
Figure 8. 85KB Image download
Figure 7. 107KB Image download
Figure 6. 49KB Image download
Figure 5. 40KB Image download
Figure 4. 59KB Image download
Figure 3. 43KB Image download
Figure 2. 19KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Link CD: C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer’s disease. Exp Gerontol 2006, 41:1007-1013.
  • [2]Poulin G, Nandakumar R, Ahringer J: Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 2004, 23:8340-8345.
  • [3]C. elegans Genome Sequencing Consortium: Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998, 282:2012-2018.
  • [4]Riddle DL, Blumenthal T, Meyer BJ, Priess JR: Introduction to C. Elegans - Origins of the Model. C Elegans II 1997.
  • [5]Kiontke K, Sudhaus W: Ecology of Caenorhabditis species. WormBook 2006, 1-14.
  • [6]Barriere A, Felix MA: Natural variation and population genetics of Caenorhabditis elegans. WormBook 2005, 1-19.
  • [7]Kammenga JE, Phillips PC, De Bono M, Doroszuk A: Beyond induced mutants: using worms to study natural variation in genetic pathways. Trends Genet 2008, 24:178-185.
  • [8]Barriere A, Felix MA: High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 2005, 15:1176-1184.
  • [9]Haber M, Schungel M, Putz A, Muller S, Hasert B, Schulenburg H: Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol 2005, 22:160-173.
  • [10]Sivasundar A, Hey J: Sampling from natural populations with RNAI reveals high outcrossing and population structure in Caenorhabditis elegans. Curr Biol 2005, 15:1598-1602.
  • [11]Sivasundar A, Hey J: Population genetics of Caenorhabditis elegans: the paradox of low polymorphism in a widespread species. Genetics 2003, 163:147-157.
  • [12]Graustein A, Gaspar JM, Walters JR, Palopoli MF: Levels of DNA polymorphism vary with mating system in the nematode genus caenorhabditis. Genetics 2002, 161:99-107.
  • [13]Barriere A, Felix MA: Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics 2007, 176:999-1011.
  • [14]Cutter AD: Molecular evolution inferences from the C. elegans genome. WormBook 2010, 1-14.
  • [15]Koch R, van Luenen HG, van der Horst M, Thijssen KL, Plasterk RH: Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res 2000, 10:1690-1696.
  • [16]Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, Felix MA, Kruglyak L: Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 2012, 44:285-290.
  • [17]Hodgkin J, Doniach T: Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 1997, 146:149-164.
  • [18]Solorzano E, Okamoto K, Datla P, Sung W, Bergeron RD, Thomas WK: Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans. BMC Evol Biol 2011, 11:168. BioMed Central Full Text
  • [19]Volkers RJ, Snoek LB, Hubar CJ, Coopman R, Chen W, Yang W, Sterken MG, Schulenburg H, Braeckman BP, Kammenga JE: Gene-environment and protein-degradation signatures characterize genomic and phenotypic diversity in wild Caenorhabditis elegans populations. BMC Biol 2013, 11:93. BioMed Central Full Text
  • [20]Swan KA, Curtis DE, McKusick KB, Voinov AV, Mapa FA, Cancilla MR: High-throughput gene mapping in Caenorhabditis elegans. Genome Res 2002, 12:1100-1105.
  • [21]Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH: Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 2001, 28:160-164.
  • [22]Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O: CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 2012, 192:1249-1269.
  • [23]Flibotte S, Edgley ML, Maydan J, Taylor J, Zapf R, Waterston R, Moerman DG: Rapid high resolution single nucleotide polymorphism-comparative genome hybridization mapping in Caenorhabditis elegans. Genetics 2009, 181:33-37.
  • [24]Johnson TE, Wood WB: Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci USA 1982, 79:6603-6607.
  • [25]Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JA, Hazendonk E, Prins P, Plasterk RH, Jansen RC, Breitling R, Kammenga JE: Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2006, 2:e222.
  • [26]Seidel HS, Rockman MV, Kruglyak L: Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 2008, 319:589-594.
  • [27]Doroszuk A, Snoek LB, Fradin E, Riksen J, Kammenga J: A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res 2009, 37:e110.
  • [28]Palopoli MF, Rockman MV, TinMaung A, Ramsay C, Curwen S, Aduna A, Laurita J, Kruglyak L: Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature 2008, 454:1019-1022.
  • [29]McGrath PT, Rockman MV, Zimmer M, Jang H, Macosko EZ, Kruglyak L, Bargmann CI: Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 2009, 61:692-699.
  • [30]Persson A, Gross E, Laurent P, Busch KE, Bretes H, de Bono M: Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 2009, 458:1030-1033.
  • [31]Hallem EA, Sternberg PW: Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA 2008, 105:8038-8043.
  • [32]Kammenga JE, Doroszuk A, Riksen JA, Hazendonk E, Spiridon L, Petrescu AJ, Tijsterman M, Plasterk RH, Bakker J: A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 2007, 3:e34.
  • [33]Tijsterman M, Okihara KL, Thijssen K, Plasterk RH: PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr Biol 2002, 12:1535-1540.
  • [34]Atkinson-Leadbeater K, Nuttley WM, van der Kooy D: A genetic dissociation of learning and recall in Caenorhabditis elegans. Behav Neurosci 2004, 118:1206-1213.
  • [35]Jurado P, Kodama E, Tanizawa Y, Mori I: Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans. Genes Brain Behav 2010, 9:120-127.
  • [36]Reddy KC, Andersen EC, Kruglyak L, Kim DH: A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 2009, 323:382-384.
  • [37]Darby C, Chakraborti A, Politz SM, Daniels CC, Tan L, Drace K: Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 2007, 176:221-230.
  • [38]de Bono M, Bargmann CI: Natural variation in a Neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 1998, 94:679-689.
  • [39]Gloria-Soria A, Azevedo RB: npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 2008, 18:1694-1699.
  • [40]Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ, Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T, Wilson RK, Mardis ER: Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 2008, 5:183-188.
  • [41]Weber KP, De S, Kozarewa I, Turner DJ, Babu MM, de Bono M: Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans. PLoS One 2010, 5:e13922.
  • [42]Flibotte S, Edgley ML, Chaudhry I, Taylor J, Neil SE, Rogula A, Zapf R, Hirst M, Butterfield Y, Jones SJ, Marra MA, Barstead RJ, Moerman DG: Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 2010, 185:431-441.
  • [43]Rose AM, O’Neil NJ, Bilenky M, Butterfield YS, Malhis N, Flibotte S, Jones MR, Marra M, Baillie DL, Jones SJ: Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern. BMC Genomics 2010, 11:131. BioMed Central Full Text
  • [44]Sarin S, Prabhu S, O’Meara MM, Pe’er I, Hobert O: Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 2008, 5:865-867.
  • [45]Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, Narula S, Hobert O: Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 2010, 185:417-430.
  • [46]Denver DR, Dolan PC, Wilhelm LJ, Sung W, Lucas-Lledo JI, Howe DK, Lewis SC, Okamoto K, Thomas WK, Lynch M, Baer CF: A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci USA 2009, 106:16310-16314.
  • [47]Denver DR, Howe DK, Wilhelm LJ, Palmer CA, Anderson JL, Stein KC, Phillips PC, Estes S: Selective sweeps and parallel mutation in the adaptive recovery from deleterious mutation in Caenorhabditis elegans. Genome Res 2010, 20:1663-1671.
  • [48]Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG: Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res 2007, 17:337-347.
  • [49]Maydan JS, Lorch A, Edgley ML, Flibotte S, Moerman DG: Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans. BMC Genomics 2010, 11:62. BioMed Central Full Text
  • [50]Denver DR, Morris K, Thomas WK: Phylogenetics in Caenorhabditis elegans: an analysis of divergence and outcrossing. Mol Biol Evol 2003, 20:393-400.
  • [51]Chen N, Harris TW, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Bradnam K, Canaran P, Chan J, Chen CK, Chen WJ, Cunningham F, Davis P, Kenny E, Kishore R, Lawson D, Lee R, Muller HM, Nakamura C, Pai S, Ozersky P, Petcherski A, Rogers A, Sabo A, Schwarz EM, Van Auken K, Wang Q, Durbin R, Spieth J, Sternberg PW, Stein LD: WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Res 2005, 33:D383-D389.
  • [52]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [53]Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA databases. Genome Res 2001, 11:1725-1729.
  • [54]Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L: VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009, 25:2283-2285.
  • [55]Collins DW, Jukes TH: Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 1994, 20:386-396.
  • [56]Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM: The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452:872-876.
  • [57]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  • [58]Coghlan A, Wolfe KH: Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 2002, 12:857-867.
  • [59]Hillier LW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, Waterston RH: Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol 2007, 5:e167.
  • [60]Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, et al.: The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 2003, 1:E45.
  • [61]Vergara IA, Chen N: Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC Genomics 2010, 11:516. BioMed Central Full Text
  • [62]Stewart MK, Clark NL, Merrihew G, Galloway EM, Thomas JH: High genetic diversity in the chemoreceptor superfamily of Caenorhabditis elegans. Genetics 2005, 169:1985-1996.
  • [63]Chen N, Pai S, Zhao Z, Mah A, Newbury R, Johnsen RC, Altun Z, Moerman DG, Baillie DL, Stein LD: Identification of a nematode chemosensory gene family. Proc Natl Acad Sci USA 2005, 102:146-151.
  • [64]Frech C, Chen N: Genome-wide comparative gene family classification. PLoS One 2010, 5:e13409.
  • [65]Thomas JH, Robertson HM: The Caenorhabditis chemoreceptor gene families. BMC Biol 2008, 6:42. BioMed Central Full Text
  • [66]Grantham R: Amino acid difference formula to help explain protein evolution. Science 1974, 185:862-864.
  • [67]Li WH, Wu CI, Luo CC: Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 1984, 21:58-71.
  • [68]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [69]Jurka J: Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 2000, 16:418-420.
  • [70]Vergara IA, Frech C, Chen N: CooVar: co-occurring variant analyzer. BMC Res Notes 2012, 5:615. BioMed Central Full Text
  • [71]Bruinsma JJ, Schneider DL, Davis DE, Kornfeld K: Identification of mutations in Caenorhabditis elegans that cause resistance to high levels of dietary zinc and analysis using a genomewide map of single nucleotide polymorphisms scored by pyrosequencing. Genetics 2008, 179:811-828.
  • [72]Denver DR, Morris K, Kewalramani A, Harris KE, Chow A, Estes S, Lynch M, Thomas WK: Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol 2004, 58:584-595.
  • [73]Barnes TM, Kohara Y, Coulson A, Hekimi S: Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 1995, 141:159-179.
  • [74]Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J: Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000, 408:325-330.
  • [75]Maeda I, Kohara Y, Yamamoto M, Sugimoto A: Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001, 11:171-176.
  • [76]Vergara IA, Mah AK, Huang JC, Tarailo-Graovac M, Johnsen RC, Baillie DL, Chen N: Polymorphic segmental duplication in the nematode Caenorhabditis elegans. BMC Genomics 2009, 10:329. BioMed Central Full Text
  • [77]Ceron J, Rual JF, Chandra A, Dupuy D, Vidal M, van den Heuvel S: Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev Biol 2007, 7:30. BioMed Central Full Text
  • [78]Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421:231-237.
  • [79]Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M: Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 2004, 14:2162-2168.
  • [80]Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH: Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 2003, 1:E12.
  • [81]Bendesky A, Tsunozaki M, Rockman MV, Kruglya L, Bargmann CI: Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 2011, 472:313-318.
  • [82]Yamada K, Hirotsu T, Matsuki M, Kunitomo H, Iino Y: GPC-1, a G protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis elegans. Genetics 2009, 181:1347-1357.
  • [83]MacArthur DG, Tyler-Smith C: Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 2010, 19:R125-R130.
  • [84]Piano F, Schetter AJ, Morton DG, Gunsalus KC, Reinke V, Kim SK, Kemphues KJ: Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 2002, 12:1959-1964.
  • [85]Waters K, Yang AZ, Reinke V: Genome-wide analysis of germ cell proliferation in C.elegans identifies VRK-1 as a key regulator of CEP-1/p53. Dev Biol 2010, 344:1011-1025.
  • [86]Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Röder M, Finell J, Häntsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gönczy P, Coulson A, et al.: Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005, 434:462-469.
  • [87]Croce A, Cassata G, Disanza A, Gagliani MC, Tacchetti C, Malabarba MG, Carlier MF, Scita G, Baumeister R, Di Fiore PP: A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat Cell Biol 2004, 6:1173-1179.
  • [88]She R, Chu JS, Wang K, Pei J, Chen N: GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res 2009, 19:143-149.
  • [89]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [90]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  文献评价指标  
  下载次数:39次 浏览次数:13次