期刊论文详细信息
BMC Systems Biology
A proof for loop-law constraints in stoichiometric metabolic networks
Ron Milo1  Nathan E Lewis2  Elad Noor1 
[1] Department of Plant Sciences, 234 Herzl st., Weizmann Institute of Science, Rehovot 76100, Israel;Wyss Institute for Biologically Inspired Engineering and Department of Genetics, 77 Avenue Louis Pasteur, Harvard Medical School, Boston, MA 02115, USA
关键词: Metabolism;    Gordan’s theorem;    Thermodynamics;   
Others  :  1143461
DOI  :  10.1186/1752-0509-6-140
 received in 2012-07-05, accepted in 2012-10-30,  发布年份 2012
PDF
【 摘 要 】

Background

Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well.

Results

Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves.

Conclusions

The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling.

【 授权许可】

   
2012 Noor et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329082417613.pdf 358KB PDF download
Figure 2. 35KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lewis NE, Nagarajan H, Palsson BO: Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012, 10(4):291-305.
  • [2]Thorleifsson SG, Thiele I: rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinf (Oxford, England) 2011, 27(14):2009-10.
  • [3]Thiele I, Palsson BO: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.
  • [4]Beard Da, Liang Sd, Qian H: Energy balance for analysis of complex metabolic networks. Biophys j 2002, 83:79-86.
  • [5]Varma A, Palsson BO: Metabolic capabilities of escherichia coli: I. synthesis of biosynthetic precursors and cofactors. J Theor Biol 1993, 165(4):477-502.
  • [6]Holzhütter HG: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem / FEBS 2004, 271(14):2905-22.
  • [7]Henry CS, Broadbelt LJ, Hatzimanikatis V: Thermodynamics-based metabolic flux analysis. Biophys J 2007, 92(5):1792-1805.
  • [8]Fleming RMT, Thiele I, Provan G, Nasheuer HP: Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol 2010, 264(3):683-692.
  • [9]Fleming RMT, Thiele I: von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models. Bioinf (Oxford, England) 2011, 27(1):142-143.
  • [10]Cogne G, Rügen M, Bockmayr A, Titica M, Dussap CG, Cornet JF, Legrand J: A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol Prog 2011, 27(3):631-40.
  • [11]Noor E, Bar-Even A, Flamholz A, Lubling Y, Davidi D, Milo R: An integrated open framework for thermodynamics of reactions that combines accuracy and coverage. Bioinf (Oxford, England) 2012, 27(15):2037-2044.
  • [12]De Martino D, Figliuzzi M, De Martino A, Marinari E: A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks. PLoS Computat Biol 2012, 8(6):e1002562.
  • [13]Lewis NE, Hixson KK, Conrad TM, Lerman Ja, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BO: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010, 6(390):1-13.
  • [14]Klitgord N, Segre D: The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. Genome Inform Ser 2010, 2009(22):41-55.
  • [15]Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional optimality of microbial metabolism. Science 2012, 336(6081):601-604.
  • [16]Thiele I, Fleming RMT, Bordbar A, Schellenberger J, Palsson BO: Functional characterization of alternate optimal solutions of Escherichia coli’s transcriptional and translational machinery. Biophys J 2010, 98(10):2072-81.
  • [17]Schellenberger J, Lewis NE, Palsson BO: Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 2011, 100(3):544-53.
  • [18]Lewis NE, Cho BK, Knight EM, Palsson BO: Gene expression profiling and the use of genome-scale in silico models of Escherichia coli for analysis: providing context for content. J bacteriol 2009, 191(11):3437-44.
  文献评价指标  
  下载次数:50次 浏览次数:15次