期刊论文详细信息
BMC Complementary and Alternative Medicine
Stauntonia hexaphylla (Lardizabalaceae) leaf methanol extract inhibits osteoclastogenesis and bone resorption activity via proteasome-mediated degradation of c-Fos protein and suppression of NFATc1 expression
Ju-Young Kim3  Jaemin Oh3  Myeung Su Lee3  Sung-Jun Ahn1  Sun-Hyang Park1  Jong Min Baek1  Yoon-Hee Cheon2 
[1]Department of Anatomy, School of Medicine, Wonkwang University, Iksan 570-749, Jeonbuk, Republic of Korea
[2]Center for Metabolic Function Regulation, Wonkwang University, Iksan 570-749, Jeonbuk, Republic of Korea
[3]Imaging Science based Lung and Bone Diseases Research Center, Wonkwang University, Iksan 570-749, Republic of Korea
关键词: Bone resorption;    NFATc1;    c-Fos;    Osteoclast;    Stauntonia hexaphylla;   
Others  :  1222549
DOI  :  10.1186/s12906-015-0801-6
 received in 2015-06-02, accepted in 2015-08-03,  发布年份 2015
PDF
【 摘 要 】

Background

Natural plants, including common vegetables and fruits, have been recognized as essential sources for drug discovery and the development of new, safe, and economical medicaments. Stauntonia hexaphylla (Lardizabalaceae) is widely distributed in Korea, Japan, and China, and is a popular herbal supplement in Korean and Chinese folk medicine owing to its analgesic, sedative, and diuretic properties. However, the exact pharmacological effects of S. hexaphylla extract, particularly its effect on osteoclastogenesis, are not known.

Methods

Osteoclast differentiation and function were identified with tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay, and the underling mechanisms were determined by real-time RT-PCR and western blot analysis.

Results

S. hexaphylla was found to inhibit early-stage receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without cytotoxicity and bone-resorbing activity in mature osteoclasts in a dose-dependent manner. This S. hexaphylla-mediated blockade of osteoclastogenesis involved abrogation of the NF-κB, ERK, and c-Src-Btk-PLCγ2 calcium signal pathways. Interestingly, we found that S. hexaphylla down-regulated RANKL-associated c-Fos protein induction by suppressing its translation. Furthermore, ectopic overexpression of c-Fos and NFATc1 rescued the inhibition of osteoclast differentiation by S. hexaphylla. Furthermore, S. hexaphylla inhibited the c-Fos- and NFATc1-regulated expression of genes required for osteoclastogenesis, such as TRAP, OSCAR, β3-integrin, ATP6v0d2, and CtsK.

Conclusions

These findings suggest that S. hexaphylla might be useful for the development of new anti-osteoporosis agents.

【 授权许可】

   
2015 Cheon et al.

【 预 览 】
附件列表
Files Size Format View
20150823032621584.pdf 1709KB PDF download
Fig. 4. 33KB Image download
Fig. 3. 92KB Image download
Fig. 2. 49KB Image download
Fig. 1. 205KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003; 423(6937):337-42.
  • [2]Raisz LG. Pathogenesis of osteoporosis. concepts, conflicts, and prospects. J Clin Invest. 2005; 115(12):3318-25.
  • [3]Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003; 4(8):638-49.
  • [4]Body JJ. Calcitonin for the long-term prevention and treatment of postmenopausal osteoporosis. Bone. 2002; 30(5 Suppl):75S-9S.
  • [5]Eriksen EF, Diez-Perez A, Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014; 58:126-35.
  • [6]Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000; 289(5484):1508-14.
  • [7]Sipos W, Pietschmann P, Rauner M. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Curr Med Chem. 2008; 15(2):127-36.
  • [8]Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2005; 208:30-49.
  • [9]Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K et al.. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999; 190(12):1741-54.
  • [10]Zaidi M, Blair HC, Moonga BS, Abe E, Huang CL. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res. 2003; 18(4):599-609.
  • [11]Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S et al.. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 2001; 20(6):1271-80.
  • [12]Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 2002; 4 Suppl 3:S227-32. BioMed Central Full Text
  • [13]Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H et al.. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005; 202(9):1261-9.
  • [14]Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA et al.. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994; 266(5184):443-8.
  • [15]Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al.. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002; 3(6):889-901.
  • [16]Faccio R, Cremasco V. PLCgamma2: where bone and immune cells find their common ground. Ann N Y Acad Sci. 2010; 1192:124-30.
  • [17]Kertesz Z, Gyori D, Kormendi S, Fekete T, Kis-Toth K, Jakus Z et al.. Phospholipase Cgamma2 is required for basal but not oestrogen deficiency-induced bone resorption. Eur J Clin Invest. 2012; 42(1):49-60.
  • [18]Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH. Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci. 2005; 30(12):688-97.
  • [19]Negishi-Koga T, Takayanagi H. Ca2+−NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 2009; 231(1):241-56.
  • [20]Wang HB, Yu DQ, Liang XT, Watanabe N, Tamai M, Omura S. Structures of two nortriterpenoid saponins from Stauntonia chinensis. J Nat Prod. 1990; 53(2):313-8.
  • [21]Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM et al.. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation. 2015; 131(9):805-14.
  • [22]He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park SJ et al.. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011; 6(9): Article ID e24780
  • [23]Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ, Nakamura I et al.. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004; 10(6):617-24.
  • [24]Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004; 18(18):2195-224.
  • [25]Zheng H, Yu X, Collin-Osdoby P, Osdoby P. RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J Biol Chem. 2006; 281(23):15809-20.
  • [26]Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM et al.. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 2007; 282(25):18245-53.
  • [27]Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992; 90(4):1622-7.
  • [28]Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991; 64(4):693-702.
  • [29]Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest. 2006; 116(11):2869-79.
  • [30]Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H et al.. Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment. J Cell Sci. 2012; 125(Pt 12):2910-7.
  文献评价指标  
  下载次数:33次 浏览次数:39次