期刊论文详细信息
BMC Research Notes
Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer
Christian Barth1  Sam Manna1 
[1] Department of Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
关键词: CCCH zinc finger;    Horizontal gene transfer;    PPR-TGM protein;    tRNA methyltransferase;    Pentatricopeptide repeat proteins;   
Others  :  1140502
DOI  :  10.1186/1756-0500-6-525
 received in 2013-09-12, accepted in 2013-11-29,  发布年份 2013
PDF
【 摘 要 】

Background

Pentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution.

Results

We identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM) domain, suggesting a predicted function not previously associated with PPR proteins. This group of proteins, which we have named the PPR-TGM subfamily, is found in distantly related eukaryotic lineages including cellular slime moulds, entamoebae, algae and diatoms, but appears to be the first PPR subfamily absent from plants. Each PPR-TGM protein identified is predicted to have different subcellular locations, thus we propose that these proteins have roles in tRNA metabolism in all subcellular locations, not just organelles. We demonstrate that the TGM domain is not only similar to bacterial TGM proteins, but that it is most similar to chlamydial TGMs in particular, despite the absence of PPR proteins in bacteria. Based on our data, we postulate that this subfamily of PPR proteins evolved from a TGM-encoding gene of a member of the Chlamydiae, which was obtained via ancient prokaryote-to-eukaryote horizontal gene transfer. Following its acquisition, the N-terminus of the encoded TGM protein must have been extended to include PPR motifs, possibly to confer additional functions to the protein, giving rise to the PPR-TGM subfamily.

Conclusions

The identification of a unique PPR subfamily which originated from the Chlamydiae group of bacteria offers novel insight into the origin and evolution of PPR proteins not previously considered. It also provides further understanding into their roles in non-organellar RNA metabolism.

【 授权许可】

   
2013 Manna and Barth; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325030447179.pdf 587KB PDF download
Figure 4. 92KB Image download
Figure 3. 98KB Image download
Figure 2. 90KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Gray MW, Lang BF, Burger G: Mitochondria of protists. Ann Rev Genet 2004, 38:477-524.
  • [2]Asin-Cayuela J, Gustafsson CM: Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci 2007, 32(3):111-117.
  • [3]Andersson GE, Karlberg O, Canbäck B, Kurland CG: On the origin of mitochondria: a genomics perspective. Phil Trans R Soc Lond B Biol Sci 2003, 358(1429):165-179.
  • [4]Brown JR: Ancient horizontal gene transfer. Nat Rev Genet 2003, 4(2):121-132.
  • [5]Watkins RF, Gray MW: The frequency of eubacterium-to-eukaryote lateral gene transfers shows significant cross-taxa variation within amoebozoa. J Mol Evol 2006, 63(6):801-814.
  • [6]Moustafa A, Reyes-Prieto A, Bhattacharya D: Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 2008, 3(5):e2205.
  • [7]Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL: An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 2009, 26(2):367-374.
  • [8]McDonald TR, Dietrich FS, Lutzoni F: Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 2012, 29(1):51-60.
  • [9]Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U: Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol 2012, 29(9):2223-2230.
  • [10]Delannoy E, Stanley WA, Bond CS, Small ID: Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 2007, 35:1643-1647.
  • [11]Schmitz-Linneweber C, Small I: Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 2008, 13(12):663-670.
  • [12]O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I: On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 2008, 25(6):1120-1128.
  • [13]Hayes ML, Mulligan RM: Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts. Mol Biol Evol 2011, 28(7):2029-2039.
  • [14]Hayes M, Giang K, Mulligan R: Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures. BMC Evol Biol 2012, 12:66. BioMed Central Full Text
  • [15]Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF: Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 2004, 305(5689):1457-1462.
  • [16]Choudhary M, Zanhua X, Fu Y, Kaplan S: Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. J Bacteriol 2007, 189(5):1914-1921.
  • [17]Knoop V, Rüdinger M: DYW-type PPR proteins in a heterolobosean protist: Plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett 2010, 584(20):4287-4291.
  • [18]Zoschke R, Kroeger T, Belcher S, Schöttler MA, Barkan A, Schmitz-Linneweber C: The Pentatricopeptide Repeat-SMR Protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J 2012, 72(4):547-558.
  • [19]Zoschke R, Qu Y, Zubo YO, Börner T, Schmitz-Linneweber C: Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. J Plant Res 2013, 126(3):403-414.
  • [20]Manna S, Brewster J, Barth C: Identification of pentatricopeptide repeat proteins in the model organism Dictyostelium discoideum. Int J Genomics 2013, 2013:586498.
  • [21]Kim S, Suddath F, Quigley G, McPherson A, Sussman J, Wang A, Seeman N, Rich A: Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 1974, 185(4149):435-440.
  • [22]Robertus J, Ladner JE, Finch J, Rhodes D, Brown R, Clark B, Klug A: Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 1974, 250(467):546-551.
  • [23]Salemink P, Yamane T, Hilbers C: Demonstration of a tertiary interaction in solution between the extra arm and the D-stem in two different transfer RNA’s by NMR. Nucleic Acids Res 1977, 4(11):3727-3742.
  • [24]Karpenahalli MR, Lupas AN, Söding J: TPRpred: a tool for prediction of TPR-, PPR-and SEL1-like repeats from protein sequences. BMC Bioinformatics 2007, 8:2. BioMed Central Full Text
  • [25]Claros MG, Vincens P: Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996, 241(3):779-786.
  • [26]Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007, 2(4):953-971.
  • [27]Tovar J, Fischer A, Clark CG: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 1999, 32(5):1013-1021.
  • [28]Morf L, Singh U: Entamoeba histolytica: a snapshot of current research and methods for genetic analysis. Curr Opin Microbiol 2012, 15(4):469-475.
  • [29]León-Avila G, Tovar J: Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology 2004, 150:1245-1250.
  • [30]Aguilera P, Barry T, Tovar J: Entamoeba histolytica mitosomes: Organelles in search of a function. Exp Parasitol 2008, 118(1):10-16.
  • [31]Bai C, Tolias PP: Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein. Mol Cell Biol 1996, 16(12):6661-6667.
  • [32]Cheng Y, Kato N, Wang W, Li J, Chen X: Two RNA Binding Proteins, HEN4 and HUA1, Act in the Processing of AGAMOUS Pre-mRNA in Arabidopsis thaliana. Dev Cell 2003, 4(1):53-66.
  • [33]Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y: Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 2003, 130(11):2495-2503.
  • [34]Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ: Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 2006, 26(24):9196-9208.
  • [35]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al.: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-W469.
  • [36]Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, Keeling PJ: A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 2007, 7:89. BioMed Central Full Text
  • [37]van Der Giezen M, Cox S, Tovar J: The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 2004, 4:7. BioMed Central Full Text
  • [38]Becker B, Hoef-Emden K, Melkonian M: Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 2008, 8:203. BioMed Central Full Text
  • [39]Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, et al.: The genome of the protist parasite Entamoeba histolytica. Nature 2005, 433(7028):865-868.
  • [40]Andersson JO, Hirt RP, Foster PG, Roger AJ: Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol Biol 2006, 6:27. BioMed Central Full Text
  • [41]Doolittle W: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 1998, 14(8):307-311.
  • [42]Horn M: Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 2008, 62:113-131.
  • [43]Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [44]Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [46]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [47]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.
  文献评价指标  
  下载次数:53次 浏览次数:4次