期刊论文详细信息
BMC Systems Biology
A systems biology investigation of neurodegenerative dementia reveals a pivotal role of autophagy
Thanh-Phuong Nguyen1  Laura Caberlotto1 
[1] The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto, Italy
关键词: Amyotrophic lateral sclerosis-Parkinsonism/dementia complex;    Pick’s disease;    Corticobasal dementia;    Progressive supranuclear palsy;    Lewy bodies disease;    Alzheimer’s disease;    Frontotemporal dementia;    AMPK;    GSK-3β;   
Others  :  866350
DOI  :  10.1186/1752-0509-8-65
 received in 2014-01-14, accepted in 2014-05-20,  发布年份 2014
PDF
【 摘 要 】

Background

Neurodegenerative dementia comprises chronic and progressive illnesses with major clinical features represented by progressive and permanent loss of cognitive and mental performance, including impairment of memory and brain functions. Many different forms of neurodegenerative dementia exist, but they are all characterized by death of specific subpopulation of neurons and accumulation of proteins in the brain. We incorporated data from OMIM and primary molecular targets of drugs in the different phases of the drug discovery process to try to reveal possible hidden mechanism in neurodegenerative dementia. In the present study, a systems biology approach was used to investigate the molecular connections among seemingly distinct complex diseases with the shared clinical symptoms of dementia that could suggest related disease mechanisms.

Results

Network analysis was applied to characterize an interaction network of disease proteins and drug targets, revealing a major role of metabolism and, predominantly, of autophagy process in dementia and, particularly, in tauopathies. Different phases of the autophagy molecular pathway appear to be implicated in the individual disease pathophysiology and specific drug targets associated to autophagy modulation could be considered for pharmacological intervention. In particular, in view of their centrality and of the direct association to autophagy proteins in the network, PP2A subunits could be suggested as a suitable molecular target for the development of novel drugs.

Conclusion

The present systems biology investigation identifies the autophagy pathway as a central dis-regulated process in neurodegenerative dementia with a prevalent involvement in diseases characterized by tau inclusion and indicates the disease-specific molecules in the pathway that could be considered for therapy.

【 授权许可】

   
2014 Caberlotto and Nguyen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727071050990.pdf 3344KB PDF download
123KB Image download
92KB Image download
71KB Image download
100KB Image download
101KB Image download
131KB Image download
93KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hickey C, Chisholm T, Passmore MJ, O’Brien JD, Johnston J: Differentiating the dementias: revisiting synucleinopathies and tauopathies. Curr Alzheimer Res 2008, 5:52-60.
  • [2]Galpern WR, Lang AE: Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 2006, 59:449-458.
  • [3]Loscalzo J, Barabasi A-L: Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 2011, 3:619-627.
  • [4]Barabasi A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [5]Vidal M, E Cusick M, Barabási A-L: Interactome networks and human disease. Cell 2011, 144:986-998.
  • [6]Oti M, Snel B, Huynen MA, Brunner HG: Predicting disease genes using protein-protein interactions. J Med Genet 2006, 43:691-698.
  • [7]Kann MG: Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform 2007, 8:333-346.
  • [8]Schuster-Böckler B, Bateman A: Protein interactions in human genetic diseases. Genome Biol 2008, 9:R9.
  • [9]Navlakha S, Kingsford C: The power of protein interaction networks for associating genes with diseases. Bioinformatics 2010, 26:1057-1063.
  • [10]Nguyen T-P, Ho T-B: Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. Artif Intell Med 2012, 54:63-71.
  • [11]Jordán F, Nguyen T-P, Liu W-C: Studying protein-protein interaction networks: a systems view on diseases. Brief Funct Genomics 2012, 11:497-504.
  • [12]Caberlotto L, Lauria M, Nguyen T-P, Priami C: The central role of AMP-kinase and energy homeostasis impairment in Alzheimer’s disease: a multifactor network analysis. Plos One 2013, 8(11):e78919.
  • [13]Thanh-Phuong N, Laura C, Morine CP MJ: Network analysis of neurodegenerative disease highlights a role of toll-like receptor signaling. Biomed Res Int 2014, 2014:686505.
  • [14]Caberlotto L, Lauria M, Nguyen T-P, Scotti M: The central role of AMP-kinase and energy homeostasis impairment in Alzheimer’s disease: a multifactor network analysis. PLoS One 2013, 8:e78919.
  • [15]Chen X, Burgoyne RD: Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms. BMC Genomics 2012, 13:71.
  • [16]Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M: The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics 2007, 23:2129-2138.
  • [17]Vasaikar SV, Padhi AK, Jayaram B, Gomes J: NeuroDNet - an open source platform for constructing and analyzing neurodegenerative disease networks. BMC Neurosci 2013, 14:3.
  • [18]Gad SC: Pharmaceutical Sciences Encyclopedia. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010.
  • [19]Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y: A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012, 7:e37608.
  • [20]Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M: Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013, 8:e60618.
  • [21]Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005, 33(Database issue):D514-D517.
  • [22]Baxevanis AD: Searching Online Mendelian Inheritance in Man (OMIM) for information for genetic loci involved in human disease. Curr Protoc Hum Genet 2003, Chapter 9:Unit9.13.
  • [23]Brown KR, Jurisica I: Online predicted human interaction database. Bioinformatics 2005, 21:2076-2082.
  • [24]Zotenko E, Mestre J, O’Leary DP, Przytycka TM: Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 2008, 4:e1000140.
  • [25]Zhang S, Jin G, Zhang X-S, Chen L: Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 2007, 7:2856-2869.
  • [26]Yook S-H, Oltvai ZN, Barabási A-L: Functional and topological characterization of protein interaction networks. Proteomics 2004, 4:928-942.
  • [27]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009, 10:48.
  • [28]Supek F, Bošnjak M, Škunca N, Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011, 6:e21800.
  • [29]Behrends C, Sowa ME, Gygi SP, Harper JW: Network organization of the human autophagy system. Nature 2010, 466:68-76.
  • [30]Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M: AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 2011, 118:460-474.
  • [31]Cai Z, Yan L-J, Li K, Quazi SH, Zhao B: Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromolecular Med 2012, 14:1-14.
  • [32]Vingtdeux V, Davies P, Dickson DW, Marambaud P: AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 2011, 121:337-349.
  • [33]Iqbal K, Grundke-Iqbal I: Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies . Acta Neuropathol 2005, 109:25-31.
  • [34]Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
  • [35]Klionsky DJ, Emr SD: Autophagy as a regulated pathway of cellular degradation. Science 2000, 290:1717-1721.
  • [36]Levine B, Yuan J: Autophagy in cell death: an innocent convict? J Clin Invest 2005, 115:2679-2688.
  • [37]Roach PJ: AMPK - > ULK1 - > autophagy. Mol Cell Biol 2011, 31:3082-3084.
  • [38]Komatsu M, Kominami E, Tanaka K: Autophagy and neurodegeneration. Autophagy 2006, 2:315-317.
  • [39]Martin A, Joseph JA, Cuervo AM: Stimulatory effect of vitamin C on autophagy in glial cells. J Neurochem 2002, 82:538-549.
  • [40]Qin A-P, Liu C-F, Qin Y-Y, Hong L-Z, Xu M, Yang L, Liu J, Qin Z-H, Zhang H-L: Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 2010, 6:738-753.
  • [41]Kragh CL, Ubhi K, Wyss-Coray T, Wyss-Corey T, Masliah E: Autophagy in dementias. Brain Pathol 2012, 22:99-109.
  • [42]Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M: Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013, 106–107:33-54.
  • [43]Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005, 122:927-939.
  • [44]Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M: Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 2004, 279:8452-8459.
  • [45]Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, Shen Y, Rameh L, Yankner B, Tsai L-H, Yuan J: Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 2010, 38:500-511.
  • [46]Funderburk SF, Wang QJ, Yue Z: The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 2010, 20:355-362.
  • [47]He C, Levine B: The Beclin 1 interactome. Curr Opin Cell Biol 2010, 22:140-149.
  • [48]Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA: Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 2004, 63:821-830.
  • [49]Cataldo AM, Barnett JL, Mann DM, Nixon RA: Colocalization of lysosomal hydrolase and beta-amyloid in diffuse plaques of the cerebellum and striatum in Alzheimer’s disease and Down's syndrome. J Neuropathol Exp Neurol 1996, 55:704-715.
  • [50]Cataldo AM, Hamilton DJ, Nixon RA: Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res 1994, 640:68-80.
  • [51]Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA: Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci 1996, 16:186-199.
  • [52]Mufson EJ, Counts SE, Ginsberg SD: Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease. Neurochem Res 2002, 27:1035-1048.
  • [53]Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV, Mufson EJ, Nixon RA, Che S: Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 2010, 68:885-893.
  • [54]Nixon RA, Cataldo AM: Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 2006, 9(3 Suppl):277-289.
  • [55]Lipinski MM: Towards the global understanding of the autophagy regulatory network. Autophagy 2010, 6:1218-1220.
  • [56]Barton AJ, Crook BW, Karran EH, Brown F, Dewar D, Mann DM, Pearson RC, Graham DI, Hardy J, Hutton M, Duff K, Goate AM, Clark RF, Roberts GW: Alteration in brain presenilin 1 mRNA expression in early onset familial Alzheimer’s disease. Neurodegeneration 1996, 5:213-218.
  • [57]Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS: Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997, 19:939-945.
  • [58]Gómez-Isla T, Growdon WB, McNamara MJ, Nochlin D, Bird TD, Arango JC, Lopera F, Kosik KS, Lantos PL, Cairns NJ, Hyman BT: The impact of different presenilin 1 andpresenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer’s disease brain: evidence for other phenotype-modifying factors. Brain 1999, 122(Pt 9):1709-1719.
  • [59]Neely KM, Green KN: Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy 2011, 7:664-665.
  • [60]Lee J-H, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141:1146-1158.
  • [61]Proikas-Cezanne T, Robenek H: Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med 2011, 15:2007-2010.
  • [62]Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V: Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J 2009, 28:2244-2258.
  • [63]Borroni B, Archetti S, Del Bo R, Papetti A, Buratti E, Bonvicini C, Agosti C, Cosseddu M, Turla M, Di Lorenzo D, Pietro Comi G, Gennarelli M, Padovani A: TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Res 2010, 13:509-517.
  • [64]Bose JK, Huang C-C, Shen C-KJ: Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 2011, 286:44441-44448.
  • [65]Wang I-F, Tsai K-J, Shen C-KJ: Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 2013, 9:239-240.
  • [66]Ng C-H, Guan MSH, Koh C, Ouyang X, Yu F, Tan E-K, O’Neill SP, Zhang X, Chung J, Lim K-L: AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 2012, 32:14311-14317.
  • [67]Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F: Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem 2007, 282:6763-6772.
  • [68]Noh M-Y, Koh S-H, Kim Y, Kim HY, Cho GW, Kim SH: Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 2009, 108:1116-1125.
  • [69]Martinez A, Gil C, Perez DI: Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int J Alzheimers Dis 2011, 2011:280502.
  • [70]Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF: Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 1999, 58:1010-1019.
  • [71]Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen Y-G: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 2010, 12:781-790.
  • [72]Magnaudeix A, Wilson CM, Page G, Bauvy C, Codogno P, Lévêque P, Labrousse F, Corre-Delage M, Yardin C, Terro F: PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol Aging 2013, 34:770-790.
  • [73]Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG: Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 1989, 337:78-81.
  • [74]Zhang Z, Simpkins JW: An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res 2010, 1359:233-246.
  • [75]Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q, Tian Q: Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 2011, 25:1118-1125.
  • [76]Saha AK, Avilucea PR, Ye J-M, Assifi MM, Kraegen EW, Ruderman NB: Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 2004, 314:580-585.
  • [77]Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen K-C, Blalock EM, Landfield PW, Porter NM, Thibault O: Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2012, 30:943-961.
  文献评价指标  
  下载次数:13次 浏览次数:2次