| BMC Pulmonary Medicine | |
| Exhaled breath profiling for diagnosing acute respiratory distress syndrome | |
| Peter J Sterk1  Marcus J Schultz2  Lieuwe DJ Bos1  | |
| [1] Department of Respiratory Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, G3–228, 1105 AZ Amsterdam, The Netherlands | |
| 关键词: Sensitivity and specificity; Volatile organic compound; Electronic nose; Exhaled breath; ARDS; | |
| Others : 862988 DOI : 10.1186/1471-2466-14-72 |
|
| received in 2013-12-16, accepted in 2014-04-09, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The acute respiratory distress syndrome (ARDS) is a common, devastating complication of critical illness that is characterized by pulmonary injury and inflammation. The clinical diagnosis may be improved by means of objective biological markers. Electronic nose (eNose) technology can rapidly and non–invasively provide breath prints, which are profiles of volatile metabolites in the exhaled breath. We hypothesized that breath prints could facilitate accurate diagnosis of ARDS in intubated and ventilated intensive care unit (ICU) patients.
Methods
Prospective single-center cohort study with training and temporal external validation cohort. Breath of newly intubated and mechanically ventilated ICU-patients was analyzed using an electronic nose within 24 hours after admission. ARDS was diagnosed and classified by the Berlin clinical consensus definition. The eNose was trained to recognize ARDS in a training cohort and the diagnostic performance was evaluated in a temporal external validation cohort.
Results
In the training cohort (40 patients with ARDS versus 66 controls) the diagnostic model for ARDS showed a moderate discrimination, with an area under the receiver–operator characteristic curve (AUC–ROC) of 0.72 (95%–confidence interval (CI): 0.63-0.82). In the external validation cohort (18 patients with ARDS versus 26 controls) the AUC–ROC was 0.71 [95%–CI: 0.54 – 0.87]. Restricting discrimination to patients with moderate or severe ARDS versus controls resulted in an AUC–ROC of 0.80 [95%–CI: 0.70 – 0.90]. The exhaled breath profile from patients with cardiopulmonary edema and pneumonia was different from that of patients with moderate/severe ARDS.
Conclusions
An electronic nose can rapidly and non–invasively discriminate between patients with and without ARDS with modest accuracy. Diagnostic accuracy increased when only moderate and severe ARDS patients were considered. This implicates that breath analysis may allow for rapid, bedside detection of ARDS, especially if our findings are reproduced using continuous exhaled breath profiling.
Trial registration
NTR2750, registered 11 February 2011.
【 授权许可】
2014 Bos et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140725023609683.pdf | 474KB | ||
| 59KB | Image | ||
| 44KB | Image |
【 图 表 】
【 参考文献 】
- [1]Ards Definition Task Force T: Acute respiratory distress syndrome: The berlin definition. JAMA 2012, 307:2526-2533.
- [2]Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez J-M, Aramburu J-A, Peñuelas O, Cortés-Puch I, Cardinal-Fernández P, Lorente JA, Frutos-Vivar F: Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 2013, 187:761-767.
- [3]Ferguson N, Meade M, Hallett D, Stewart T: High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 2002, 28:1073-1077.
- [4]Thompson BT, Matthay MA: The Berlin definition of ARDS versus pathological evidence of diffuse alveolar damage. Am J Respir Crit Care Med 2013, 187:675-677.
- [5]Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC, Imp BM, Cortez A, Abbott J, Liu KD, Calfee CS: Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 2013, 187:736-742.
- [6]Pugin J, Verghese G, Widmer MC, Matthay MA: The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 1999, 27:304-312.
- [7]Choi G, Wolthuis EK, Bresser P, Levi M, van der Poll T, Dzoljic M, Vroom MB, Schultz MJ: Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 2006, 105:689-695.
- [8]Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, van der Poll T, Vroom MB, Hollmann M, Schultz MJ: Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 2008, 108:46-54.
- [9]Bos LDJ, Sterk PJ, Schultz MJ: Measuring metabolomics in acute lung injury: choosing the correct compartment? Am J Respir Crit Care Med 2012, 185:789.
- [10]van de Kant K, van der Sande L, Jobsis Q, van Schayck O, Dompeling E: Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res 2012, 13:117. BioMed Central Full Text
- [11]Bos LDJ, van Walree IC, Kolk AHJ, Janssen H-G, Sterk PJ, Schultz MJ: Alterations of exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury. J Appl Physiol 2013, 115(10):1487-1495.
- [12]Baldwin SR, Simon RH, Grum CM, Ketai LH, Boxer LA, Devall LJ: Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet 1986, 1:11-14.
- [13]Schubert JK, Muller WP, Benzing A, Geiger K: Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 1998, 24:415-421.
- [14]Fens N, de Nijs SB, Peters S, Dekker T, Knobel HH, Vink TJ, Willard NP, Zwinderman AH, Krouwels FH, Janssen H-G, Lutter R, Sterk PJ: Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J 2011, 38:1301-1309.
- [15]Filipiak W, Sponring A, Bauer M, Filipiak A, Ager C, Wiesenhofer H, Nagl M, Troppmair J, Amann A: Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol 2012, 12:113. BioMed Central Full Text
- [16]Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL, International Surviving Sepsis Campaign Guidelines Committee, et al.: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008, 36:296-327.
- [17]Roca O, Gomez-Olles S, Cruz MJ, Munoz X, Griffiths MJ, Masclans JR: Mechanical ventilation induces changes in exhaled breath condensate of patients without lung injury. Respir Med 2010, 104:822-828.
- [18]Roca O, Gomez-Olles S, Cruz MJ, Munoz X, Griffiths MJ, Masclans JR: Effects of salbutamol on exhaled breath condensate biomarkers in acute lung injury: prospective analysis. Crit Care 2008, 12:R72. BioMed Central Full Text
- [19]Gessner C, Dihazi H, Brettschneider S, Hammerschmidt S, Kuhn H, Eschrich K, Keller T, Engelmann L, Sack U, Wirtz H: Presence of cytokeratins in exhaled breath condensate of mechanical ventilated patients. Respir Med 2008, 102:299-306.
- [20]Carpenter CT, Price PV, Christman BW: Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 1998, 114:1653-1659.
- [21]Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ: Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 2009, 180:1076-1082.
- [22]Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GF: Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn 2004, 4:619-629.
- [23]Dolch ME, Frey L, Hornuss C, Schmoelz M, Praun N, Villinger J, Schelling G: Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. J Breath Res 2008, 2:037010.
- [24]Röck F, Barsan N, Weimar U: Electronic nose: current status and future trends. Chem Rev 2008, 108:705-725.
- [25]Friedrich MJ: Scientists seek to sniff out diseases: electronic “noses” may someday be diagnostic tools. JAMA 2009, 301:585-586.
- [26]Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. BMJ 2003, 326:41-44.
- [27]Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M: Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012, 98:691-698.
- [28]Bos LDJ, Fens N, van der Schee MP, Sterk PJ, Schultz MJ: Fast assessment of ALI/ARDS in the ICU using exhaled breath analysis [Abstract]. Am J Respir Crit Care Med 2010, 181:A2583.
- [29]Jones SR, Carley S, Harrison M: An introduction to power and sample size estimation. Emerg Med J 2003, 20:453-458.
- [30]Broadhurst D, Kell DB: Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2:171-196.
- [31]Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R: The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994, 149:818-824.
- [32]Klein Klouwenberg PMC, Ong DSY, Bos LDJ, de Beer FM, van Hooijdonk RTM, Huson MA, Straat M, van Vught LA, Wieske L, Horn J, Schultz MJ, van der Poll T, Bonten MJ, Cremer OL: Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit Care Med 2013, 41(10):2373-2378. Publish Ahead of Print:10.1097/CCM.1090b1013e3182923712
- [33]Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008, 36:309-332.
- [34]Bos LDJ, Wang Y, Weda H, Nijsen TME, Janssen APGE, Knobel HH, Vink TJ, Schultz MJ, Sterk PJ: A simple breath sampling method in intubated and mechanically ventilated critically ill patients. Respir Physiol Neurobiol 2013, 191:67-74.
- [35]Abe H, Kanaya S, Takahashi Y, Sasaki S-I: Method for monitoring sensor stability in a multiple semiconductor gas-sensor system. Anal Chim Acta 1989, 225:89-96.
- [36]Haugen J-E, Tomic O, Kvaal K: A calibration method for handling the temporal drift of solid state gas-sensors. Anal Chim Acta 2000, 407:23-39.
- [37]R Development Core Team: R: A language and environment for statistical computing. Vienne, Austria: R Foundation for Statistical Computing; 2010. [http://www.R-project.org webcite]
- [38]Chun H, Keles S: Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Series B Stat Methodol 2010, 72:3-25.
- [39]Bowler RP, Duda B, Chan ED, Enghild JJ, Ware LB, Matthay MA, Duncan MW: Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 2004, 286:L1095-L1104.
- [40]Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F 2nd, Park DR, Pugin J, Skerrett SJ, Hudson LD, Martin TR: Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 164:1896-1903.
- [41]Chang DW, Hayashi S, Gharib SA, Vaisar T, King ST, Tsuchiya M, Ruzinski JT, Park DR, Matute-Bello G, Wurfel MM, Bumgarner R, Heinecke JW, Martin TR: Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome. Am J Respir Crit Care Med 2008, 178:701-709.
- [42]Gessner C, Hammerschmidt S, Kuhn H, Seyfarth HJ, Sack U, Engelmann L, Schauer J, Wirtz H: Exhaled breath condensate acidification in acute lung injury. Respir Med 2003, 97:1188-1194.
- [43]Fens N, Roldaan AC, van der Schee MP, Boksem RJ, Zwinderman AH, Bel EH, Sterk PJ: External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin Exp Allergy 2011, 41:1371-1378.
- [44]Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM: Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess 2007, 11:iii, ix-51.
- [45]Ashbaugh DG, Bigelow DB, Petty TL, Levine BE: Acute respiratory distress in adults. Lancet 1967, 2:319-323.
- [46]Katzenstein AL, Bloor CM, Leibow AA: Diffuse alveolar damage–the role of oxygen, shock, and related factors: a review. Am J Pathol 1976, 85:209-228.
- [47]Boots AW, van Berkel JJ, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ: The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 2012, 6:027108.
- [48]Guaman AV, Carreras A, Calvo D, Agudo I, Navajas D, Pardo A, Marco S, Farre R: Rapid detection of sepsis in rats through volatile organic compounds in breath. J Chromatogr B Analyt Technol Biomed Life Sci 2012, 881–882:76-82.
PDF