期刊论文详细信息
BMC Evolutionary Biology
Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)
Rainer R Schoch3  Susan E Evans6  Johannes Müller1  Christy A Hipsley2  Cajsa Lisa Anderson5  Marc EH Jones4 
[1]Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
[2]Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
[3]Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
[4]School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
[5]University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
[6]Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
关键词: Tuatara;    Triassic;    Squamata;    Origin;    Molecular;    Lizards;    Lepidosauria;    Jurassic;    Fossil;    Dating;   
Others  :  1085918
DOI  :  10.1186/1471-2148-13-208
 received in 2013-04-05, accepted in 2013-09-02,  发布年份 2013
PDF
【 摘 要 】

Background

Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole.

Results

Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238–240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238–249.5), and crown-group Squamata originated around 193 Mya (176–213).

Conclusion

A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.

【 授权许可】

   
2013 Jones et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113181558274.pdf 3660KB PDF download
Figure 5. 155KB Image download
Figure 4. 183KB Image download
Figure 3. 59KB Image download
Figure 2. 97KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Zug GR, Vitt LJ, Caldwell JP: Herpetology, an introductory biology of amphibians and reptiles. New York: Academic Press; 2001.
  • [2]Pyron RA, Burbrink FT, Wiens JJ: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 2013, 13:93. BioMed Central Full Text
  • [3]Alfaro ME, Santinia F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci 2009, 106:13410-13414.
  • [4]Jones MEH, Cree A: Tuatara. Curr Biol 2012, 22:986-987.
  • [5]Evans SE, Jones MEH: The origin, early history and diversification of lepidosauromorph reptiles. In New Aspects of Mesozoic Biodiversity Edited by Bandyopadhyay S. 2010, 27-44. [Lec Not Earth Sci. 132nd volume]
  • [6]Evans SE: Lizards: evolution, early radiation and biogeography. In Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota Short Papers. Edited by Sun A, Wang Y. Beijing: China Ocean Press; 1995:271-283.
  • [7]Evans SE: Lepidosaurian faunas from the Early Cretaceous: a clade in transition. In Lower and Middle Cretaceous Continental Ecosystems. 14th edition. Edited by Lucas SG, Kirkland JI, Estep JW. Albuquerque: New Mexico Museum of Natural History and Science; 1998:195-200. [Bull New Mex Mus Nat Hist Sci]
  • [8]Evans SE: Crown group lizards from the Middle Jurassic of Britain. Palaeontographica A 1998, 250:123-154.
  • [9]Evans SE: At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biol Rev 2003, 78:513-551.
  • [10]Jones MEH, Tennyson AJD, Worthy JP, Evans SE, Worthy TH: A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proc Roy Soc B 2009, 276:1385-1390.
  • [11]Fraser NC, Benton MJ: The Triassic reptiles Brachyrhinodon and Polysphenodon and the relationships of the sphenodontids. Zool J Linn Soc 1989, 96:413-445.
  • [12]Sues H-D, Olsen PE: Triassic vertebrates of Gondwanan aspect from the Richmond Basin of Virginia. Science 1990, 249:1020-1023.
  • [13]Sues H-D, Hopson JA: Anatomy and phylogenetic relationships of Boreogomphodon jeffersoni (Cynodontia: Gomphodontia) from the Upper Triassic of Virginia. J Vertebr Paleontol 2010, 30:1202-1220.
  • [14]Sues H-D, Olsen PE, Kroehler PA: Small tetrapods from the Upper Triassic of the Richmond basin (Newark Supergroup), Virginia. In In the shadow of the dinosaurs: Early Mesozoic tetrapods. Edited by Fraser NC, Sues H-D. Cambridge: Cambridge University Press; 1994:161-170.
  • [15]Whiteside DI: The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov., and the modernising of a living fossil. Phil Trans R Soc B 1986, 312:379-430.
  • [16]Datta PM, Ray S: Earliest lizard from the Late Triassic (Carnian) of India. J Verteb Paleontol 2006, 26:795-800.
  • [17]Hutchinson MN, Skinner A, Lee MSY: Tikiguania and the antiquitiy of squamate reptiles (lizards and snakes). Biol Lettin press 10.1098/rsbl.2011.1216
  • [18]Evans SE, Prasad GVR, Manhas BK: Fossil lizards from the Jurassic Kota formation of India. J Vertebr Paleontol 2002, 22:299-312.
  • [19]Reynoso VH: A Middle Jurassic Sphenodon-like sphenodontian (Diapsida: Lepidosauria) from Huizachal Canyon, Tamaulipas, Mexico. J Vertebr Paleontol 1996, 16:210-221.
  • [20]Apesteguía S, Novas FE: Large Cretaceous sphenodontian from Patagonia provides insights into lepidosaur evolution in Gondwana. Nature 2003, 425:609-612.
  • [21]Rauhut OWM, Heyng AM, López-Arbarello A, Hecker A: A new rhynchocephalian from the Late Jurassic of Germany with a dentition that is unique amongst tetrapods. PLoS ONE 2012, 10:e46839.
  • [22]Fraser NC: A new rhynchocephalian from the British Upper Trias. Palaeontol 1982, 25:709-725.
  • [23]Fraser NC: New Triassic sphenodontids from South West England and a review of their classification. Palaeontol 1986, 29:165-186.
  • [24]Heckert AB, Lucas SG, Rinehart LF, Hunt AP: A new genus and species of sphenodontian from the Ghost Ranch Coelophysis Quarry (Upper Triassic: Apachean), Rock Point Formation, New Mexico, USA. Palaeontol 2008, 51:827-845.
  • [25]Meloro C, Jones MEH: Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent 'living fossil’ label. J Evol Biol 2012, 11:2194-2209.
  • [26]Evans SE: A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of Oxfordshire. Zool J Linn Soc 1991, 103:391-412.
  • [27]Carroll RL: Permo-Triassic 'lizards’ from the Karroo. Palaeontol Afr 1975, 18:71-87.
  • [28]Waldman M, Evans SE: Lepidosauromorph reptiles from the Middle Jurassic of Skye. Zool J Linn Soc 1994, 112:135-150.
  • [29]Robinson PL: Gliding lizards from the Upper Keuper of Great Britain. Proc Geol Soc 1962, 1601:137-146.
  • [30]Colbert EH: Icarosaurus — a gliding reptile from the Triassic of New Jersey. Am Mus Nov 1966, 2246:1-23.
  • [31]Clark JM, Hernandez RR: A new burrowing diapsid from the Jurassic La Boca Formation of Tamaulipas, Mexico. J Vertebr Paleontol 1994, 14:180-195.
  • [32]Renesto S, Posenato R: A new lepidosauromorph reptile from the Middle Triassic of the Dolomites (Northern Italy). Riv Ital Paleont Strat 2003, 109:463-474.
  • [33]Evans SE: An early kuehneosaurid reptile (Reptilia: Diapsida) from the Early Triassic of Poland. Palaeontol Pol 2009, 65:145-178.
  • [34]Evans SE, Borsuk-Białynicka M: A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontol Pol 2009, 65:179-202.
  • [35]Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 1998, 392:917-920.
  • [36]Hugall AF, Foster R, Lee MS: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 2007, 56:543-563.
  • [37]Kumazawa Y: Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 2007, 388:19-26.
  • [38]Albert EM, San Mauro D, García-París M, Rüber L, Zardoya R: Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data. Gene 2009, 441:12-21.
  • [39]Pyron RA: A likelyhood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 2010, 59:185-194.
  • [40]Gorr TA, Mable BK, Kleinschmidt T: Phylogenetic analysis of reptilian hemoglobins: tree, rates, and divergences. J Mol Evol 1998, 47:471-485.
  • [41]Wiens JJ, Brandley MC, Reeder TW: Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 2006, 60:123-141.
  • [42]Hipsley CA, Himmelmann L, Metzler D, Müller J: Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol Biol 2009, 9:151. BioMed Central Full Text
  • [43]Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW, Wiens JJ: Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol Phylogenet Evol 2012, 65:974-991.
  • [44]Benton MJ, Donoghue PCJ: Paleontological evidence to date the tree of life. Mol Biol Evol 2007, 24:26-53.
  • [45]Benton MJ: Phylogeny of the major tetrapod groups: morphological data and divergence dates. J Mol Evol 1990, 30:409-424.
  • [46]Gradstein F, Ogg J, Smith A: A geologic time scale 2004. Cambridge UK: Cambridge University Press; 2004.
  • [47]Gradstein FM, Ogg JG, Schmitz M, Ogg G: The geological time scale 2012. Amsterdam: Elsevier; 2012.
  • [48]Janke A, Erpenbeck D, Nilsson M, Arnason U: The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc R Soc Lond B 2001, 268:623-631.
  • [49]Okajima Y, Kumazawa Y: Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines. Gene 2009, 441:28-35.
  • [50]Shen X-X, Liang D, Wen J-Z, Zhang P: Multiple genome alignments facilitate development of NPCL markers: a case study of tetrapod phylogeny focusing on the position of turtles. Mol Biol Evol 2011, 28:3237-3252.
  • [51]Vidal N, Hedges SB: The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 2005, 328:1000-1008.
  • [52]Müller J, Reisz R: Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. Bioessays 2005, 27:1069-1075.
  • [53]Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 2010, 10:141. BioMed Central Full Text
  • [54]Grimaldi D, Engel MS: Evolution of the Insects. Cambridge: Cambridge University Press; 2005.
  • [55]Sellwood BW, Valdes PJ: Mesozoic climates: General circulation models and the rock record. Sediment Geol 2006, 190:269-287.
  • [56]Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, St. John O, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP: A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 2007, 318:1913-1916.
  • [57]McElwain JC, Punyasena SW: Mass extinction events and the plant fossil record. TRENDS Ecol Evol 2007, 22:548-557.
  • [58]Blakey RC: Gondwana palaeogeography from assembly to break up - a 500 m.y. odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space 441st edition. Edited by Fielding CR, Frank TD, Isbell JL. 2008, 1-28. [Geol Soc Am Sp Pap]
  • [59]Krassilov V, Karasev E: Paleofloristic evidence of climate change near and beyond the Permian-Triassic boundary. Palaeogeog Palaeoclim Palaeoecol 2009, 284:326-336.
  • [60]Irmis RB: Evaluating hypotheses for the early diversification of dinosaurs. Earth Eviron Sci Trans R Soc Edinburgh 2010, 101:397-426.
  • [61]Preto N, Kustatscher E, Wignall PB: Triassic climates — State of the art and perspectives. Palaeogeog Palaeoclim Palaeoecol 2010, 290:1-10.
  • [62]Bonis NR, Kürschner WM: Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology 2012, 38:240-264.
  • [63]Olsen PE, Kent DV, Sues H-D, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW: Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 2002, 296:1305-1307.
  • [64]Benton MJ, Tverdokhlebov VP, Surkov MV: Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 2004, 432:97-100.
  • [65]Kiehl JT, Shields CA: Climate simulation of the latest Permian: Implications for mass extinction. Geology 2005, 33:757-760.
  • [66]Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN: Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci 2010, 107:6721-6725.
  • [67]Irmis RB, Whiteside JH: Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proc R Soc Lond B 2011, 279:1310-1318.
  • [68]Chen Z-Q, Benton MJ: The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 2012, 5:375-383.
  • [69]Britton T: Estimating divergence times in phylogenetic trees without a molecular clock. Syst Biol 2005, 54:500-507.
  • [70]Bremer K, Friis EM, Bremer B: Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Syst Biol 2004, 53:496-505.
  • [71]Rutschmann F, Eriksson T, Abu Salim K, Conti E: Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Syst Biol 2007, 56:591-608.
  • [72]Vitt LJ, Pianka ER: Deep history impacts present-day ecology and biodiversity. Proc Nat Acad Sci 2005, 22:7877-7881.
  • [73]Macey JR, Schulte JA II, Larson A, Ananjeva NB, Wang Y, Pethiyagoda R, Rastegar-Pouyani N, Theodore J: Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst Biol 2000, 49:233-256.
  • [74]Parham JF, Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, Tuinen MV, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ: Best practices for justifying fossil calibrations. Syst Biol 2012, 61:346-359.
  • [75]Schoch RR: Stratigraphie und Taphonomie wirbeltierreicher Schichten im Unterkeuper (Mitteltrias) von Vellberg (SW-Deutschland). Stuttgarter Beitr Naturkd B 2002, 318:1-30.
  • [76]Menning M, Gast R, Hagdorn H, Kading KC, Simon T, Szurlies M, Nitsch E: Time scale for the Permian and Triassic groups in the Stratigraphical Scale of Germany 2002, cyclostratigraphic calibration of the Dyassic and Germanic Triassic groups and the age of the strata Roadium to Rhaetium 2005. News Strat 2005, 41:173-210.
  • [77]DSK: Deutsche Stratigraphische Kommission (Hrsg.): Stratigraphie von Deutschland IV - Keuper. Courier Forschungsinstitut Senckenberg 2005, 253:296. S., 64 Abb., 50 Tab., 2 Taf.; Frankfurt am Main
  • [78]Kozur HW, Bachman GH: Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berichte Geol 2008, 76:53-58.
  • [79]Wild R: The fossil deposits of Kupferzell, Southwest Germany. Mesoz Vertebr Life 1980, 1:15-18.
  • [80]Gower DJ: The cranial and mandibular osteology of a new rauisuchian archosaur from the Middle Triassic of southern Germany. Stuttgarter Beitr Naturkd B 1999, 280:1-49.
  • [81]Schoch RR: Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen). Stuttgarter Beitr Naturkd B 1999, 278:1-175.
  • [82]Schoch RR: A complete trematosaur amphibian from the Middle Triassic of Germany. J Vert Paleont 2006, 26:29-43.
  • [83]Schoch RR: A new stereospondyl from the German Middle Triassic, and the origin of the Metoposauridae. Zool J Linn Soc 2008, 152:79-113.
  • [84]Schoch RR: A procolophonid-like tetrapod from the German Middle Triassic. N Jb Geol Paläont Abh 2011, 259:251-255.
  • [85]Hopson JA, Sues H-D: A traversodont cynodont from the Middle Triassic (Ladinian) of Baden-Württemberg (Germany). Palaeontol Zeit 2006, 80:124-129.
  • [86]Witzmann F, Schoch RR, Maisch MW: A relic basal tetrapod from Germany: first evidence of a Triassic chroniosuchian outside Germany. Naturwissenschaften 2008, 95:67-72.
  • [87]Gower DJ, Schoch RR: Postcranial anatomy of the rauisuchian archosaur Batrachotomus kupferzellensis. J Vertebr Paleontol 2009, 29:103-122.
  • [88]Schoch RR, Witzmann F: Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 2012, 45:371-385.
  • [89]Lindström S, Vosgerau H, Piasecki S, Henrik Nielsen L, Dybkjær K, Erlström M: Ladinian palynofloras in the Norwegian-Danish Basin: a regional marker reflecting a climate change. Geol Sur Denmark Greenl Bull 2009, 17:21-24.
  • [90]Stefani M, Furin S, Gianolla P: The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeog Palaeoclim Palaeoecol 2010, 290:43-57.
  • [91]Evans SE: The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool J Linn Soc 1980, 70:203-264.
  • [92]Evans SE: The early history and relationships of the Diapsida. In The Phylogeny and Classification of the Tetrapods. Edited by Benton MJ. Oxford, UK: Oxford University Press; 1988:221-253.
  • [93]Benton MJ: Classification and phylogeny of the diapsid reptiles. Zool J Linn Soc 1985, 84:97-164.
  • [94]Gauthier JA, Estes R, de Queiroz K: A phylogenetic analysis of the Lepidosauromorpha. In Phylogenetic relationships of the lizard families: essays commemorating Charles L. Camp. Edited by Estes R, Pregill G. Stanford, CA, USA: Stanford University Press; 1988:15-98.
  • [95]Swofford DL: PAUP*: phylogenetic analysis using parsimony, version 4b10. Sunderland, MA, USA: Sinauer Associates; 2003.
  • [96]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [97]Gouy M, Guindon S, Gacuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [98]Nylander JAA: MrModeltest v2. Program distributed by the author: Evolutionary Biology Centre, Uppsala University; 2004.
  • [99]Ren F, Tanaka H, Yang Z: An empirical examination of the utility of codon-substitution models in phylogeny reconstruction. Syst Biol 2005, 54:808-818.
  • [100]Wahlberg N, West Wheat C: Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst Biol 2008, 57(2):231-242.
  • [101]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [102]Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 2002, 19:101-109.
  • [103]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):e88.
  • [104]Evans SE, King MS: A new specimen of Protorosaurus (Reptilia: Diapsida) from the Marl Slate (late Permian) of Britain. Yorkshire Geol Soc 1993, 49:229-234.
  • [105]Butler RJ, Brusatte SL, Reich M, Nesbitt SJ, Schoch RR, Hornung JJ: The sail-backed reptile Ctenosauriscus from the Latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 2011, 6(10):e25693.
  • [106]Bauer AM, Bohme W, Weitschat W: An Early Eocene gecko from Baltic amber and its implications for the evolution of gecko adhesion. J Zool 2005, 265:327-332.
  • [107]Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garrett A: A new proposal concerning the botanical origin of Baltic amber. Proc R Soc B 2009, 276:3403-3412.
  • [108]Sullivan RM: Caudata and Squamata from Gidley and Silberling Quarries, Montana. J Vertebr Paleontol 1991, 11:293-301.
  • [109]Lofgren DL, Lillegraven JA, Clemens WA, Gingerich PD, Williamson TE: Paleocene biochronology of North America: the Puercan through Clarkforkian land mammal ages. In Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Edited by Woodburne MO. New York: Columbia University Press; 2004:43-105.
  • [110]Lofgren DL, Scherer BE, Clark CK, Standhardt B: First record of Stygimys (Mammalia, Multituberculata, Eucosmodontidae) from the Paleocene (Puercan) part of the North Horn Formation, Utah, and a review of the genus. J Mamm Evol 2005, 12:77-97.
  • [111]Sullivan RM: A New Middle Paleocene (Torrejonian) rhineurid amphisbaenian, Plesiorhineura tsentasi new genus, new species, from the San Juan Basin, New Mexico. J Palaeontol 1985, 59:1481-1485.
  • [112]Prothero DR, Estes R: Late Jurassic lizards from Como Bluff Wyoming and their paleobiogeographic significance. Nature 1981, 286:484-486.
  • [113]Evans SE, Chure DJ: Upper Jurassic lizards from the Morrison Formation of Dinosaur National Mounment. In Vertebrate Paleontology in Utah. Edited by Gillete DD. Utah: Miscellaneous Publication 99–1 Utah Geological Survey; 1999:151-159.
  • [114]Conrad JL, Ast JC, Montanari S, Norell MA: A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics 2011, 27:230-277.
  • [115]Rieppel O, Grande L: The anatomy of the fossil varanid lizard Saniwa ensidens Leidy, 1870, based on a newly discovered complete skeleton. J Paleontol 2007, 81:643-665.
  • [116]Smith ME, Carroll AR, Singer BS: Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, Western United States. GSA Bull 2008, 120:54-84.
  • [117]Smith ME, Chamberlain KR, Singer BS, Carroll AR: Eocene clocks agree: coeval 40Ar/ 39Ar, U-Pb, and astronomical ages from the Green River Formation. Geol 2010, 38:527-530.
  • [118]Cifelli RL, Kirkland JI, Weil A, Deino AL, Kowallis BJ: High precision 40Ar/39Ar geochronology of North America’s Late Cretaceous terrestrial fauna. PNAS 1997, 94:11163-11167.
  • [119]Nydam RL: A new taxon of helodermatid-like lizard from the Albian-Cenomanian of Utah. J Vertebr Paleontol 2000, 20:285-294.
  • [120]Klembara J, Green B: Anguimorph lizards (Squamata, Anguimorpha) from the Middle and Late Eocene of the Hampshire Basin of southern England. J Syst Palaeontol 2010, 8:97-129.
  • [121]Hooker JJ, Grimes ST, Mattey DP, Collinson ME, Sheldon ND: Refined correlation of the UK Late Eocene-Early Oligocene Solent Group and timing of its climate history. Geol Soc Am Sp Pap 2009, 452:179-195.
  • [122]Čerňanský A: A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios 2010, 43:605-613.
  • [123]Steininger FF, Wessely G: From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitt Osterr Geol Ges 2000, 92:95-116.
  • [124]Covacevich J, Couper P, Molnar RE, Witten G, Young W: Miocene dragons from Riversleigh: new data on the history of the family Agamidae (Reptilia: Squamata) in Australia. Mem Queensland Mus 1990, 29:339-360.
  • [125]Archer M, Hand SJ, Godthelp H, Creaser P: Correlation of the Cainozoic sediments of the Riversleigh World Heritage fossil property, Queensland, Australia. Mémoires et Travaux de l’Institut de Montpellier de l’Ecole Pratique des Hautes Etudes 1997, 21:131-152.
  • [126]Archer M, Derrick AA, Bassarova M, Beck RMD, Black K, Boles WE, Brewer P, Cooke BN, Crosby K, Gillespie A, Godthelp H, Hand SJ, Kear BP, Louys J, Morrell A, Muirhead J, Roberts KK, Scanlon JD, Travouillon KJ, Wroe S: Current status of species-level representation in faunas from selected fossil localities in the Riversleigh World Heritage Area, northwestern Queensland. Alcheringa 2006, 301:1-17.
  • [127]Clyde WC, Sheldon ND, Koch PL, Gunnell GF, Bartels WS: Linking the Wasatchian/Bridgerian boundary to the Cenozoic Global Climate Optimum: new magnetostratigraphic and isotopic results from South Pass, Wyoming. Palaeogeog Palaeoclim Palaeoecol 2001, 167:175-199.
  • [128]Conrad JL, Rieppel O, Grande L: A Green River (Eocene) polychrotid (Squamata: Reptilia) and a re-examination of iguanian systematics. J Paleontol 2007, 81:1365-1373.
  • [129]Wang XL, Zhou ZH: Mesozoic Pompei. In The Jehol Biota. Edited by Chang MM, Chen PJ, Wang YQ, Wang Y. Shanghai: Shanghai Scientific and Technical Publishers; 2003:19-35.
  • [130]Evans SE, Wang Y: The Early Cretaceous lizard Dalinghosaurus from China. Acta Pal Pol 2005, 50:725-742.
  • [131]Near TJ, Sanderson MJ: Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Phil Trans R Soc B 2004, 359:1477-1483.
  • [132]Haeckel E: Generelle Morphologie der Organismen. Zweiter Band: Allgemeine Entwicklungsgeschichte der Organismen. Berlin: Georg Reimer; 1866.
  • [133]Günther A: Contribution to the anatomy of Hatteria (Rhynchocephalus, Owen). Phil Trans R Soc Lond 1867, 157:1-34.
  • [134]Cooper JS, Poole DFG, Lawson R: The dentition of agamid lizards with special reference to tooth replacement. J Zool 1970, 162:85-98.
  • [135]Evans SE: Tooth replacement in the Lower Jurassic lepidosaur Gephyrosaurus bridensis. Neues Jahrb Geol Paläontol Abh 1985, 1985:411-420.
  • [136]Fraser NC: The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Phil Trans R Soc B 1988, 321:125-178.
  • [137]Renesto S: A sphenodontid from the Norian (Late Triassic) of Lombardy (Northern Italy): a preliminary note. Mod Geol 1995, 20:149-158.
  • [138]Jones MEH: Dentary tooth shape in Sphenodon and its fossil relatives (Diapsida: Lepidosauria: Rhynchocephalia). Front Oral Biol 2009, 13:9-15.
  • [139]Spencer PS, Benton MJ: Procolophonids from the Permo-Triassic of Russia. In The age of dinosaurs in Russia and Mongolia. Edited by Benton MJ, Shishkin MA, Unwin DM, Kurochkin EN. Cambridge, UK: Cambridge University Press; 2000:160-176.
  • [140]Heckert AB, Spencer LG, Rinehart LF, Spielmann JP, Hunt AP, Kahle R: Revision of the archosauromorph reptile Trilophosaurus, with a description of the first skull of Trilophosaurus Jacobsi, from the Upper Triassic Chinle Group, West Texas, USA. Palaeontol 2006, 49:621-640.
  • [141]Macdougall MJ, Modesto SP: New information on the skull of the Early Triassic parareptile Sauropareion anoplus, with a discussion of tooth attachment and replacement in procolophonids. J Vertebr Paleontol 2011, 31:270-278.
  • [142]Milner AR, Gardiner BG, Fraser NC, Taylor MA: Vertebrates from the Middle Triassic Otter Sandstone Formation of Devon. Palaeontol 1990, 33:873-892.
  • [143]Benton MJ, Warrington G, Newell AJ, Spencer PS: A review of Middle Triassic tetrapod assemblages. In In the shadow of the dinosaurs: Early Mesozoic tetrapods. Edited by Fraser NC, Sues H-D. Cambridge: Cambridge University Press; 1994:131-160.
  • [144]Säilä LK: Alpha taxonomy of the Russian Permian procolophonoid reptiles. Acta Palaeontol Pol 2009, 54:599-608.
  • [145]Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C R Biol 2009, 332:129-139.
  • [146]Townsend TM, Mulcahy DG, Noonan BP, Sites JW, Kuczynskic CA, Wiens JJ, Reeder TW: Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet and Evol 2011, 61:363-380.
  • [147]Evans AR, Sanson GD: The effect of tooth shape on the breakdown of insects. J Zool Lond 1998, 246:391-400.
  • [148]Fraser NC, Walkden GM: The ecology of a Late Triassic reptile assemblage from Gloucestershire, England. Palaeogeog Palaeoclimat Palaeolecol 1983, 42:341-365.
  • [149]Jones MEH: The evolution of skull shape and feeding strategy in Rhynchocephalia (Diapsida: Lepidosauria). J Morphol 2008, 269:945-966.
  • [150]Reynoso VH: Possible evidence of a venom apparatus in a middle Jurassic sphenodontian from the Huizachal red beds of Tamaulipas, México. J Vertebr Paleontol 2005, 25:646-654.
  • [151]Davic RD, Welsh HH: On the ecological role of salamanders. Annu Rev Ecol Evol Syst 2004, 35:405-434.
  • [152]Nesbitt SJ, Sidor CA, Irmis RB, Angielczyk KD, Smith RMH, Tsuji LA: Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 2010, 464:95-98.
  • [153]Butler RJ, Barrett PM, Abel RL, Gower DJ: A possible ctenosauriscid archosaur from the Middle Triassic Manda beds of Tanzania. J Vertebr Paleontol 2009, 29:1022-1031.
  • [154]Nesbitt SJ, Butler RJ: Redescription of the archosaur Parringtonia gracilis from the Middle Triassic Manda beds of Tanzania, and the antiquity of Erpetosuchidae. Geol Mag 2012, 150:225-238.
  • [155]Cisneros JC, Damiani R, Schultz C, da Rosa A, Schwanke C, Neto LW, Aurélio PLP: A procolophonoid reptile with temporal fenestration from the Middle Triassic of Brazil. Proc R Soc Lond B 2004, 271:1541-1546.
  • [156]Langer MC, Ribeiro AM, Schultz CL, Ferigolo J: The continental tetrapod-bearing Triassic of south Brazil. In The Global Triassic. 41st edition. Edited by Lucas SG, Spielman JA. Albuquerque: New Mexico Museum of Natural History and Science; 2007:201-218. [New Mex Mus Nat Hist Sci Bull]
  • [157]Rogers RR, Arcucci AB, Abdala F, Sereno PC, Forster CA, May CL: Paleoenvironment and taphonomy of the Chañares Formation tetrapod assemblage (Middle Triassic), Northwestern Argentina: spectacular preservation in volcanogenic concretions. Palaois 2001, 16:461-481.
  • [158]Nesbitt SJ: Arizonasaurus and its implication for archosaur divergence. Proc Roy Soc B 2003, 17:9-47.
  • [159]Nesbitt SJ: Osteology of the Middle Triassic pseudosuchian archosaur Arizonasaurus. Hist Biol 2005, 17:9-47.
  • [160]Bandyopadhyhy S, Sengupta D: Middle Triassic vertebrates of India. J Afr Earth Sci 1999, 29:233-241.
  • [161]Sen K: A new rauisuchian archosaur from the Middle Triassic of India. Palaeontol 2005, 48:185-196.
  • [162]Catuneanu O, Wopfner H, Eriksson PG, Cairncross B, Rubidge BS, Smith RMH, Hancox PJ: The Karoo basins of south-central Africa. J Afr Earth Sci 2005, 43:211-253.
  • [163]Nicolas M, Rubidge BS: Changes in Permo-Triassic terrestrial tetrapod ecological representation in the Beaufort Group (Karoo Supergroup) of South Africa. Lethaia 2010, 43:45-59.
  • [164]Liu J: Parakannemeyeria chengi sp. nov. from the Kelamayi Formation of Jimusar, Xinjiang. Vertebr Palasiat 2004, 42:77-80.
  • [165]Gao K-Q, Fox RC, Zhou C-F, Li D-Q: A new nonmammalian eucynodont (Synapsida: Therapsida) from the Triassic of Northern Gansu Province, China, and its biostratigraphic and biogeographic Implications. Am Mus Nov 2010, 3685:1-25.
  • [166]Kalandadze NN, Sennikov AG: New reptiles from the Middle Triassic of the Cis- Urals. Paleontol J 1985, 1985(2):77-84.
  • [167]Abdala F, Smith RMH: A Middle Triassic cynodont fauna from Namibia and its implications for the biogeography of Gondwana. J Vertebr Palaentol 2009, 29:837-851.
  • [168]Fröbisch J, Angielczyk KD, Sidor CA: The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction. Naturwissenschaften 2010, 97:187-196.
  • [169]Jalil N: Sur deux crânes des petits Sauria (Amniota, Diapsida) du Trias moyen d’Algerie. C R Acad Sci Paris 1990, 311:731-736.
  • [170]Fortuny J, Galobart A, Santisteban C: A new capitosaur from the Middle Triassic of Spain and the relationships within the Capitosauria. Acta Palaeontol Polon 2011, 56:553-566.
  • [171]Evans SE, Borsuk-Białynicka M: A stem-group frog from the Early Triassic of Poland. Acta Palaeont Pol 1998, 43:573-580.
  • [172]Evans SE, Milner AR, Mussett F: The earliest known salamanders (Amphibia, Caudata) a record from the Middle Jurassic of England. Geobios 1988, 21:539-552.
  • [173]Skutschas PP, Krasnolutskii SA: A new genus and species of basal salamanders from the Middle Jurassic of Western Siberia, Russia. Proc Zool Inst RAS 2011, 315:167-175.
  • [174]Jenkins FA, Walsh DM, Carroll RL: Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull Mus Comp Zool 2007, 158:285-365.
  • [175]Gardner JD, Evans SE, Sigogneau-Russell D: New albanerpetontid amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta Pal Polonica 2003, 48:301-319.
  • [176]Matsumoto R, Evans SE: Choristoderes and the freshwater assemblages of Laurasia. J Iberian Geol 2010, 36:253-274.
  • [177]Anderson JS, Reisz RR, Scott D, Fröbisch NB, Sumida SS: A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 2008, 453:515-518.
  • [178]San Mauro D: A multilocus timescale for the origin of extant amphibians. Mol Phylogenet Evol 2010, 56:554-561.
  • [179]Magallón SA: Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int J Plant Sci 2004, 165:7-21.
  • [180]Nesbitt SJ: The early evolution of archosaurs: relationships and the origin of major clades. Bull Am Mus Nat Hist 2011, 352:1-292.
  • [181]Evans SE, Prasad GVR, Manhas BK: Rhynchocephalians (Reptilia : Lepidosauria) from the Mesozoic Kota Formation of India. Zool J Linn Soc 2001, 133:309-334.
  • [182]Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Mol Bio Evol 1998, 15:1647-1657.
  • [183]Anderson CL: Dating divergence times in phylogenies. In PhD thesis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology . Uppsala: Acta Universitatis Upsaliensis; 2007.
  • [184]Himmelman L, Metzler D: TreeTime: an extensible C++ software package for Bayesian phylogeny reconstruction with time-calibration. Bioinformatics 2009, 25:2440-2441.
  • [185]Nesbitt SJ, Barrett PM, Werning S, Sidor CA, Charig AJ: The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biol Lett 2013., 9http://rsbl.royalsocietypublishing.org/content/9/1/20120949 webcite
  • [186]Upchurch P: Gondwanan break-up: legacies of a lost world? Tren Ecol Evol 2008, 23:229-236.
  • [187]Carranza S, Arnold EN, Mateo JA, López-Jurado LF: Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proc R Soc B 2000, 267:637-649.
  • [188]Calsbeek R, Smith TB: Ocean currents mediate evolution in island lizards. Nature 2003, 426:552-555.
  • [189]De Queiroz A: The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 2005, 20:68-73.
  • [190]Vidal N, Azvolinsky A, Cruaud C, Hedges SB: Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 2008, 4:115-118.
  • [191]Goswami A, Upchurch P: The dating game: a reply to Heads (2010). Zool Scripta 2010, 39:406-409.
  • [192]Milner AC, Milner AR, Evans SE: Global changes and biota: amphibians, reptiles and birds. In Biotic Response to Global Change: the last 145 million years. Edited by Culver S, Rawson P. Cambridge, UK: Cambridge University Press; 2000:316-332.
  • [193]Apesteguía S, Rougier GW: A Late Campanian sphenodontid maxilla from northern Patagonia. Am Mus Nov 2007, 3581:1-11.
  • [194]Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM: Coming to America: multiple origins of New World geckos. J Evol Biol 2011, 24:231-244.
  • [195]Arnold EN, Poinar G: A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa 1847, 2008:62-68.
  • [196]Alifanov VR: The most ancient gekkos (Lacertilia: Gekkonidae) from the Lower Cretaceous of Mongolia. Paleontol Zh 1989, 1:57-74.
  • [197]Daza JD, Alifanov VR, Bauer AM: A redescription and phylogenetic reinterpretation of the fossil lizard Hoburogekko suchanovi Alifanov, 1989 (Squamata, Gekkota), from the Early Cretaceous of Mongolia. J Vertebr Paleontol 2012, 32:1302-1312.
  • [198]Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM: Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 2012, 7(6):e39429.
  • [199]Renesto S, Bernardi M: Redescription and phylogenetic relationships of Megachirella wachtleri Renesto et Posenato, 2003 (Reptilia, Diapsida). Paläontol Zeitin press 10.1007/s12542-013-0194-0
  文献评价指标  
  下载次数:80次 浏览次数:50次