期刊论文详细信息
BMC Genomics
Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria
Muriel Gugger3  Jörn Piel2  Kaarina Sivonen5  Cheryl A Kerfeld4  Jouni Jokela5  Thierry Laurent3  Thérèse Coursin3  Amel Latifi6  David P Fewer5  Alexandra Calteau1 
[1] Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Genoscope & CNRS, UMR 8030, Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, Evry, France;Institute of Microbiology, Eidgenoessiche Technische Hochschule (ETH), Zurich, Switzerland;Institut Pasteur, Collection des Cyanobactéries, Paris, France;DOE Plant Research Center, Michigan State University, Michigan, MI, USA;Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland;Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Marseille, France
关键词: Evolution;    Diversity;    PKS;    NRPS;    Secondary metabolite;    Cyanobacteria;   
Others  :  1092494
DOI  :  10.1186/1471-2164-15-977
 received in 2014-07-25, accepted in 2014-10-30,  发布年份 2014
PDF
【 摘 要 】

Background

Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood.

Results

We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways for the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways.

Conclusions

Therefore, in addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.

【 授权许可】

   
2014 Calteau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128184939126.pdf 1638KB PDF download
Figure 7. 48KB Image download
Figure 6. 110KB Image download
Figure 5. 88KB Image download
Figure 4. 97KB Image download
Figure 3. 41KB Image download
Figure 2. 58KB Image download
Figure 1. 258KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 2013, 110:1053-1058.
  • [2]Buick R: The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulfate-deficient Archaean lakes. Science 1992, 255:74-77.
  • [3]Dittmann E, Fewer DP, Neilan BA: Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013, 37:23-43.
  • [4]Namikoshi M, Rinehart K: Bioactive compounds produced by cyanobacteria. J Ind Microbiol 1996, 17:373-384.
  • [5]Burja A, Banaigs B, Abou-Mansour E, Burgess J, Wright P: Marine cyanobacteria - a prolific source of natural products. Tetrahedron 2001, 57:9347-9377.
  • [6]Welker M, von Döhren H: Cyanobacterial peptides—nature’s own nonribosomal combinatorial biosynthesis. FEMS Microbiol Rev 2006, 30:530-563.
  • [7]Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA: Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 2008, 74:716-722.
  • [8]Mejean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O: Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J Am Chem Soc 2009, 131:7512-7513.
  • [9]Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA: Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 2000, 7:753-764.
  • [10]Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA: Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 2008, 74:4044-4053.
  • [11]Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH: Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 2004, 67:1356-1367.
  • [12]Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH: Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 2004, 11:817-833.
  • [13]Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS, Yates JR 3rd, Reinhardt R, Kube M, Burkart MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L: Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 2011, 108:8815-8820.
  • [14]Gu L, Wang B, Kulkarni A, Geders T, Grindberg R, Gerwick L, Håkansson K, Wipf P, Smith J, Gerwick W, Sherman D: Metamorphic enzyme assembly in polyketide diversification. Nature 2009, 459:731-735.
  • [15]Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K: Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 2004, 101:568-573.
  • [16]Moustafa A, Loram JE, Hackett JD, Anderson DM, Plumley FG, Bhattacharya D: Origin of saxitoxin biosynthetic genes in Cyanobacteria. PLoS One 2009, 4:e578.
  • [17]Ginolhac A, Jarrin C, Robe P, Perriere G, Vogel TM, Simonet P, Nalin R: Type I polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol 2005, 60:716-725.
  • [18]Jenke-Kodama H, Sandmann A, Müller R, Dittmann E: Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 2005, 22:2027-2039.
  • [19]Jenke-Kodama H, Börner T, Dittmann E: Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput Biol 2006, 2:e132.
  • [20]Fischbach M, Walsh CT, Clardy J: The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A 2008, 105:4601-4608.
  • [21]Hertweck C: The biosynthetic logic of polyketide diversity. Angew Chem-Int Edit 2009, 48:4688-4716.
  • [22]Balskus EP, Walsh CT: The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 2010, 329:1653-1656.
  • [23]Marahiel M, Essen L-O: Nonribosomal peptide synthetases: mechanistic and structural aspects of essential domains. Method Enzymol 2009, 458:337-351.
  • [24]Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K: Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). Chem Biol 2010, 17:265-273.
  • [25]Rinehart K, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan P, Beasley V, Dahlem A, Carmichael W: Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 1988, 110:8557-8558.
  • [26]Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K: Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 2011, 77:7271-7278.
  • [27]Araoz R, Nghiem H-O, Rippka R, Palibroda N, Tandeau de Marsac N, Herdman M: Neurotoxins in axenic oscillatorian cyanobacteria: coexistence of anatoxin-a and homoanatoxin-a determined by ligand-binding assay and GC/MS. Microbiology 2005, 151:1263-1273.
  • [28]Laport M, Santos O, Muricy G: Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 2009, 10:86-105.
  • [29]Letzel A-C, Pidot S, Hertweck C: A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2013, 30:377-476.
  • [30]Karlin S: Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1998, 1:598-610.
  • [31]Fan Q, Huang G, Lechno-Yossef S, Wolk CP, Kaneko T, Tabata S: Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 2005, 58:227-243.
  • [32]Kumar K, Mella-Herrera R, Golden J: Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2009, 2:a000315.
  • [33]Shulse C, Allen E: Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS One 2011, 6:e20146.
  • [34]Goldman S, Lammers P, Berman M, Sanders-Loehr J: Siderophore-mediated iron uptake in different strains of Anabaena sp. J Bacteriol 1983, 156:1144-1150.
  • [35]Beiderbeck H, Taraz K, Budzikiewicz H, Walsby A: Anachelin, the siderophore of the cyanobacterium Anabaena cylindrica CCAP 1403/2A. Z Naturforsch C 2000, 55:681-687.
  • [36]Itou Y, Okada S, Murakami M: Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 2001, 57:9093-9099.
  • [37]Ito Y, Ishida K, Okada S, Murakami M: The absolute stereochemistry of anachelins, siderophores from the cyanobacterium Anabaena cylindrica. Tetrahedron 2004, 60:9075-9080.
  • [38]Jeanjean R, Talla E, Latifi A, Havaux M, Janicki A, Zhang CC: A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 2008, 10:2574-2585.
  • [39]Rondon M, Ballering K, Thomas M: Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 2004, 150:3857-3866.
  • [40]Jones A, Monroe E, Eisman E, Gerwick L, Sherman D, Gerwick WH: The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 2010, 27:1048-1065.
  • [41]Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT: A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS One 2013, 8:e70747.
  • [42]Sogge H, Rohrlack T, Rounge TB, Sonstebo JH, Tooming-Klunderud A, Kristensen T, Jakobsen KS: Gene flow, recombination, and selection in cyanobacteria: population structure of geographically related Planktothrix freshwater strains. Appl Environ Microbiol 2013, 79:508-515.
  • [43]Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR: Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 2014, 111:E1130-E1139.
  • [44]Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F: Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 2008, 9:R90. BioMed Central Full Text
  • [45]Szöllosi G, Boussau B, Abby S, Tannier E, Daubin V: Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci U S A 2012, 109:17513-17518.
  • [46]Penn K, Wang J, Fernando SC, Thompson JR: Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J 2014, 8:1866-1878.
  • [47]Hutchins D, Witter A, Butler A, Luther G III: Competition among marine phytoplankton for different chelated iron species. Nature 1999, 400:858-861.
  • [48]Kampa A, Gagunashvili A, Gulder T, Morikana B, Daolio C, Godejohann M, Miao V, Piel J, Andrésson O: Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 2013, 110:E3129-E3137.
  • [49]Leikoski N, Liu L, Jokela J, Wahlsten M, Gugger M, Calteau A, Permi P, Kerfeld C, Sivonen K, Fewer D: Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem Biol 2013, 20:1033-1043.
  • [50]Tang W, van der Donk WA: Structural characterization of four prochlorosins: a novel class of lantipeptides produced by planktonic marine cyanobacteria. Biochemistry 2012, 51:4271-4279.
  • [51]Donia MS, Ravel J, Schmidt EW: A global assembly line for cyanobactins. Nat Chem Biol 2008, 4:341-343.
  • [52]Jensen PR, Chavarria KL, Fenical W, Moore BS, Ziemert N: Challenges and triumphs to genomics-based natural product discovery. J Ind Microbiol Biotechnol 2014, 41:203-209.
  • [53]Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC, Gerwick WH: Quantitative molecular networking to profile marine cyanobacterial metabolomes. J Antibiot 2014, 67:105-112.
  • [54]Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC: Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 2012, 109:E1743-E1752.
  • [55]Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C, Ballesteros J, Sanchez J, Watrous JD, Phelan VV, van de Wiel C, Kersten RD, Mehnaz S, De Mot R, Shank EA, Charusanti P, Nagarajan H, Duggan BM, Moore BS, Bandeira N, Palsson BO, Pogliano K, Gutierrez M, Dorrestein PC: MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci U S A 2013, 110:E2611-E2620.
  • [56]Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith A, Weiman M, Médigue C: MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013, 41:D636-D647.
  • [57]Bachmann B, Ravel J: Chapter 8. Methods for in silico prediction of microbial secondary metabolic pathways from DNA sequence data. Method Enzymol 2009, 458:181-217.
  • [58]Medema M, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach M, Weber T, Takano E, Breitling R: antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011, 39:W339-W346.
  • [59]Ziemert N, Podell S, Penn K, Badger J, Allen E, Jensen P: The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 2012, 7:e34064.
  • [60]Röttig M, Medema M, Blin K, Weber T, Rausch C, Kohlbacher O: NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 2011, 39:w362-w367.
  • [61]Marchler-Bauer A, Bryant S: CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004, 32:W327-W331.
  • [62]Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [63]Mulder N, Apweiler R: InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 2007, 369:59-70.
  • [64]Wu M, Eisen J: A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008, 9:R151. BioMed Central Full Text
  • [65]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
  • [66]Criscuolo A, Gribaldo S: BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010, 10:201. BioMed Central Full Text
  • [67]Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [68]Kaasalainen U, Jokela J, Fewer D, Sivonen K, Rikkinen J: Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. Mol Plant Microbe Interact 2009, 22:695-702.
  文献评价指标  
  下载次数:65次 浏览次数:9次