期刊论文详细信息
BMC Clinical Pathology
Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction
Sean Ekins2  John L Blau1  Jon Maakestad3  Cory S Morris3  Denny Drees3  Matthew D Krasowski3 
[1] Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;Collaborations in Chemistry, Fuquay-Varina, NC 27526, USA;Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, C-671 GH, Iowa, IA 52242, USA
关键词: Testosterone;    Similarity;    Progesterone;    Immunoassays;    Glucocorticoids;    Estradiol;    Anabolic agents;   
Others  :  1084581
DOI  :  10.1186/1472-6890-14-33
 received in 2013-11-25, accepted in 2014-07-11,  发布年份 2014
PDF
【 摘 要 】

Background

Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids.

Methods

Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity.

Results

The Roche Elecsys Cortisol and Testosterone II assays showed a wider range of cross-reactivity than the DHEA sulfate, Estradiol II, and Progesterone II assays. 6-Methylprednisolone and prednisolone showed high cross-reactivity for the cortisol assay, with high likelihood of clinically significant effect for patients administered these drugs. In addition, 21-deoxycortisol likely produces clinically relevant cross-reactivity for cortisol in patients with 21-hydroxylase deficiency, while 11-deoxycortisol may produce clinically relevant cross-reactivity in 11β-hydroxylase deficiency or following metyrapone challenge. Several anabolic steroids may produce clinically significant false positives on the testosterone assay, although interpretation is limited by sparse pharmacokinetic data for some of these drugs. Norethindrone therapy may impact immunoassay measurement of testosterone in women. Using two-dimensional similarity calculations, all compounds with high cross-reactivity also showed a high degree of similarity to the target molecule of the immunoassay.

Conclusions

Compounds producing cross-reactivity in steroid hormone immunoassays generally have a high degree of structural similarity to the target hormone. Clinically significant interactions can occur with structurally similar drugs (e.g., prednisolone and cortisol immunoassays; methyltestosterone and testosterone immunoassays) or with endogenous compounds such as 21-deoxycortisol that can accumulate to very high concentrations in certain disease conditions. Simple similarity calculations can help triage compounds for future testing of assay cross-reactivity.

【 授权许可】

   
2014 Krasowski et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162808257.pdf 1619KB PDF download
Figure 6. 113KB Image download
Figure 5. 135KB Image download
Figure 4. 99KB Image download
Figure 3. 117KB Image download
Figure 2. 115KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Holder G: Measurement of glucocorticoids in biological fluids. Methods Mol Biol 2006, 324:141-157.
  • [2]Wheeler MJ: Measurement of androgens. Methods Mol Biol 2006, 324:197-211.
  • [3]Kricka LJ: Principles of immunochemical techniques. In Tietz textbook of clinical chemistry and molecular diagnostics. 4th edition. Edited by Burtis CA, Ashwood ER, Bruns DE. St. Louis, MO: Elsevier Saunders; 2006:219-243.
  • [4]Kulle AE, Welzel M, Holterhus PM, Riepe FG: Principles and clinical applications of liquid chromatography - tandem mass spectrometry for the determination of adrenal and gonadal steroid hormones. J Endocrinol Invest 2011, 34:702-708.
  • [5]Rauh M: Steroid measurement with LC-MS/MS. Application examples in pediatrics. J Steroid Biochem Mol Biol 2010, 121:520-527.
  • [6]Shackleton C: Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 2010, 121:481-490.
  • [7]Soldin SJ, Soldin OP: Steroid hormone analysis by tandem mass spectrometry. Clin Chem 2009, 55:1061-1066.
  • [8]Klee GG: Interferences in hormone immunoassays. Clin Lab Med 2004, 24:1-18.
  • [9]Kricka LJ: Interferences in immunoassays - still a threat. Clin Chem 2000, 46:1037-1038.
  • [10]Middle JG: Dehydroepiandrostenedione sulphate interferes in many direct immunoassays for testosterone. Ann Clin Biochem 2007, 44:173-177.
  • [11]Warner MH, Kane JW, Atkin SL, Kilpatrick ES: Dehydroepiandrosterone sulphate interferes with the Abbott Architect direct immunoassay for testosterone. Ann Clin Biochem 2006, 43:196-199.
  • [12]Tejada F, Cremades A, Monserrat F, Penafiel R: Interference of the antihormone RU486 in the determination of testosterone and estradiol by enzyme-immunoassay. Clin Chim Acta 1998, 275:63-69.
  • [13]Roberts RF, Roberts WL: Performance characteristics of five automated serum cortisol immunoassays. Clin Biochem 2004, 37:489-493.
  • [14]Krasowski MD, Pizon AF, Siam MG, Giannoutsos S, Iyer M, Ekins S: Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg Med 2009, 9:5.
  • [15]Krasowski MD, Siam MG, Iyer M, Ekins S: Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther Drug Monit 2009, 31:337-344.
  • [16]Krasowski MD, Siam MG, Iyer M, Pizon AF, Giannoutsos S, Ekins S: Chemoinformatic methods for predicting interference in drug of abuse/toxicology immunoassays. Clin Chem 2009, 55:1203-1213.
  • [17]Petrie M, Lynch KL, Ekins S, Chang JS, Goetz RJ, Wu AH, Krasowski MD: Cross-reactivity studies and predictive modeling of "Bath Salts" and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin Toxicol (Phila) 2013, 51:83-91.
  • [18]Powers DM, Boyd JC, Glick MR: Interference testing in clinical chemistry (EP7-A). NCCLS: Villanova, PA; 1986.
  • [19]Cortisol package insert for Elecsys 1010, Elecsys 2010, Modular Analytics E170, cobas e 411, and cobas e 601. 2008–04, V2 English. Indianapolis, IN, USA: Roche Diagnostics;
  • [20]Al-Habet SM, Rogers HJ: Methylprednisolone pharmacokinetics after intravenous and oral administration. Br J Clin Pharmacol 1989, 27:285-290.
  • [21]McBride JH, Rodgerson DO, Park SS, Reyes AF: Rapid liquid-chromatographic method for simultaneous determination of plasma prednisone, prednisolone, and cortisol in pediatric renal-transplant recipients. Clin Chem 1991, 37:643-646.
  • [22]Tonetto-Fernandes V, Lemos-Marini SH, Kuperman H, Ribeiro-Neto LM, Verreschi IT, Kater CE: Serum 21-Deoxycortisol, 17-Hydroxyprogesterone, and 11-deoxycortisol in classic congenital adrenal hyperplasia: clinical and hormonal correlations and identification of patients with 11beta-hydroxylase deficiency among a large group with alleged 21-hydroxylase deficiency. J Clin Endocrinol Metab 2006, 91:2179-2184.
  • [23]Ribot M, Polito A, Grassin-Delyle S, Annane D, Alvarez JC: Human plasma quantification of fludrocortisone using liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry after low-dosage administration. Clin Chim Acta 2013, 420:109-113.
  • [24]Mayo Medical Laboratories (Rochester, MN) [http://www.mayomedicallaboratories.com/ webcite]
  • [25]Berneis K, Staub JJ, Gessler A, Meier C, Girard J, Muller B: Combined stimulation of adrenocorticotropin and compound-S by single dose metyrapone test as an outpatient procedure to assess hypothalamic-pituitary-adrenal function. J Clin Endocrinol Metab 2002, 87:5470-5475.
  • [26]Abosehmah-Albidy AZ, York P, Wong V, Losowsky MS, Chrystyn H: Improved bioavailability and clinical response in patients with chronic liver disease following the administration of a spironolactone: beta-cyclodextrin complex. Br J Clin Pharmacol 1997, 44:35-39.
  • [27]Jankowski A, Skorek-Jankowska A, Lamparczyk H: Simultaneous determination of spironolactone and its metabolites in human plasma. J Pharm Biomed Anal 1996, 14:1359-1365.
  • [28]Sandall JM, Millership JS, Collier PS, McElnay JC: Development and validation of an HPLC method for the determination of spironolactone and its metabolites in paediatric plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2006, 839:36-44.
  • [29]Lonning PE, Geisler J, Johannessen DC, Gschwind HP, Waldmeier F, Schneider W, Galli B, Winkler T, Blum W, Kriemler HP, Miller WR, Faigle JW: Pharmacokinetics and metabolism of formestane in breast cancer patients. J Steroid Biochem Mol Biol 2001, 77:39-47.
  • [30]von Schnakenburg K, Bidlingmaier F, Knorr D: 17-hydroxyprogesterone, androstenedione, and testosterone in normal children and in prepubertal patients with congenital adrenal hyperplasia. Eur J Pediatr 1980, 133:259-267.
  • [31]DHEA sulfate package insert for Elecsys 1010, Elecsys 2010, Modular Analytics E170, cobas e 411, and cobas e 601. 2009–03, V13 English. Indianapolis, IN, USA: Roche Diagnostics;
  • [32]Tagawa N, Tamanaka J, Fujinami A, Kobayashi Y, Takano T, Fukata S, Kuma K, Tada H, Amino N: Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone sulfate concentrations in patients with hyperthyroidism and hypothyroidism. Clin Chem 2000, 46:523-528.
  • [33]Klak J, Hill M, Parizek A, Havlikova H, Bicikova M, Hampl R, Fait T, Sulcova J, Pouzar V, Kancheva R, Starka L: Pregnanolone isomers, pregnenolone and their polar conjugates around parturition. Physiol Res 2003, 52:211-221.
  • [34]Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, Meikle AW: Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 2006, 52:1559-1567.
  • [35]Hill M, Lukac D, Lapcik O, Sulcova J, Hampl R, Pouzar V, Starka L: Age relationships and sex differences in serum levels of pregnenolone and 17-hydroxypregnenolone in healthy subjects. Clin Chem Lab Med 1999, 37:439-447.
  • [36]Lee MM, Rajagopalan L, Berg GJ, Moshang T Jr: Serum adrenal steroid concentrations in premature infants. J Clin Endocrinol Metab 1989, 69:1133-1136.
  • [37]Estradiol II package insert for Elecsys 1010, Elecsys 2010, Modular Analytics E170, cobas e 411, and cobas e 601. 2009–05, V15 English. Indianapolis, IN, USA: Roche Diagnostics;
  • [38]Abrams LS, Skee DM, Natarajan J, Wong FA, Anderson GD: Pharmacokinetics of a contraceptive patch (Evra/Ortho Evra) containing norelgestromin and ethinyloestradiol at four application sites. Br J Clin Pharmacol 2002, 53:141-146.
  • [39]Barditch-Crovo P, Trapnell CB, Ette E, Zacur HA, Coresh J, Rocco LE, Hendrix CW, Flexner C: The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999, 65:428-438.
  • [40]Hendrix CW, Jackson KA, Whitmore E, Guidos A, Kretzer R, Liss CM, Shah LP, Khoo KC, McLane J, Trapnell CB: The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther 2004, 75:464-475.
  • [41]Trapnell CB, Donahue SR, Collins JM, Flockhart DA, Thacker D, Abernethy DR: Thalidomide does not alter the pharmacokinetics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther 1998, 64:597-602.
  • [42]Troisi R, Potischman N, Roberts JM, Harger G, Markovic N, Cole B, Lykins D, Siiteri P, Hoover RN: Correlation of serum hormone concentrations in maternal and umbilical cord samples. Cancer Epidemiol Biomarkers Prev 2003, 12:452-456.
  • [43]Wright JV, Schliesman B, Robinson L: Comparative measurements of serum estriol, estradiol, and estrone in non-pregnant, premenopausal women; a preliminary investigation. Altern Med Rev 1999, 4:266-270.
  • [44]Progesterone II package insert for Elecsys 1010, Elecsys 2010, Modular Analytics E170, cobas e 411, and cobas e 601. 2009–05, V12 English. Indianapolis, IN, USA: Roche Diagnostics;
  • [45]Baghai TC, di Michele F, Schule C, Eser D, Zwanzger P, Pasini A, Romeo E, Rupprecht R: Plasma concentrations of neuroactive steroids before and after electroconvulsive therapy in major depression. Neuropsychopharmacology 2005, 30:1181-1186.
  • [46]Ohtsu T, Fujii H, Wakita H, Igarashi T, Itoh K, Imoto S, Kohagura M, Sasaki Y: Pharmacokinetic study of low- versus high-dose medroxyprogesterone acetate (MPA) in women. Cancer Chemother Pharmacol 1998, 42:1-8.
  • [47]Bagchus WM, Smeets JM, Verheul HA, De Jager-Van Der Veen SM, Port A, Geurts TB: Pharmacokinetic evaluation of three different intramuscular doses of nandrolone decanoate: analysis of serum and urine samples in healthy men. J Clin Endocrinol Metab 2005, 90:2624-2630.
  • [48]Evans TR, Di Salle E, Ornati G, Lassus M, Benedetti MS, Pianezzola E, Coombes RC: Phase I and endocrine study of exemestane (FCE 24304), a new aromatase inhibitor, in postmenopausal women. Cancer Res 1992, 52:5933-5939.
  • [49]Testosterone II package insert for Elecsys 2010, Modular Analytics E170, cobas e 411, and cobas e 601. 2010–05, V1 English. Indianapolis, IN, USA: Roche Diagnostics;
  • [50]Shinohara Y, Baba S: Stable isotope methodology in the pharmacokinetic studies of androgenic steroids in humans. Steroids 1990, 55:170-176.
  • [51]Soma LR, Uboh CE, Guan F, McDonnell S, Pack J: Pharmacokinetics of boldenone and stanozolol and the results of quantification of anabolic and androgenic steroids in race horses and nonrace horses. J Vet Pharmacol Ther 2007, 30:101-108.
  • [52]Bender A, Glen RC: Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004, 2:3204-3218.
  • [53]Ekins S, Mestres J, Testa B: In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007, 152:21-37.
  • [54]Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN: Virtual screening in drug discovery - a computational perspective. Curr Protein Pept Sci 2007, 8:329-351.
  • [55]Ayotte C: Detecting the administration of endogenous anabolic androgenic steroids. Handb Exp Pharmacol 2010:77-98.
  • [56]Calvo D, Tort N, Salvador JP, Marco MP, Centi F, Marco S: Preliminary study for simultaneous detection and quantification of androgenic anabolic steroids using ELISA and pattern recognition techniques. Analyst 2011, 136:4045-4052.
  • [57]Lippi G, Franchini M, Banfi G: Biochemistry and physiology of anabolic androgenic steroids doping. Mini Rev Med Chem 2011, 11:362-373.
  • [58]Boudou P, Taieb J, Mathian B, Badonnel Y, Lacroix I, Mathieu E, Millot F, Queyrel N, Somma-Delpero C, Patricot MC: Comparison of progesterone concentration determination by 12 non-isotopic immunoassays and gas chromatography/mass spectrometry in 99 human serum samples. J Steroid Biochem Mol Biol 2001, 78:97-104.
  • [59]Huhtaniemi IT, Tajar A, Lee DM, O'Neill TW, Finn JD, Bartfai G, Boonen S, Casanueva FF, Giwercman A, Han TS, Kula K, Labrie F, Lean ME, Pendleton N, Punab M, Silman AJ, Vanderschueren D, Forti G, Wu FC: Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnostics in aging men. Eur J Endocrinol 2012, 166:983-991.
  • [60]Moal V, Mathieu E, Reynier P, Malthiery Y, Gallois Y: Low serum testosterone assayed by liquid chromatography-tandem mass spectrometry. Comparison with five immunoassay techniques. Clin Chim Acta 2007, 386:12-19.
  • [61]Monaghan PJ, Owen LJ, Trainer PJ, Brabant G, Keevil BG, Darby D: Comparison of serum cortisol measurement by immunoassay and liquid chromatography-tandem mass spectrometry in patients receiving the 11beta-hydroxylase inhibitor metyrapone. Ann Clin Biochem 2011, 48:441-446.
  • [62]Ohlsson C, Nilsson ME, Tivesten A, Ryberg H, Mellstrom D, Karlsson MK, Ljunggren O, Labrie F, Orwoll ES, Lee DM, Pye SR, O'Neill TW, Finn JD, Adams JE, Ward KA, Boonen S, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean ME, Pendleton N, Punab M, Vanderschueren D, Wu FC, Vandenput L: Comparisons of immunoassay and mass spectrometry measurements of serum estradiol levels and their influence on clinical association studies in men. J Clin Endocrinol Metab 2013, 98:E1097-E1102.
  • [63]Stanczyk FZ, Clarke NJ: Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol 2010, 121:491-495.
  • [64]Sluss PM, Hayes FJ, Adams JM, Barnes W, Williams G, Frost S, Ramp J, Pacenti D, Lehotay DC, George S, Ramsay C, Doss RC, Crowley WF, Jr : Mass spectrometric and physiological validation of a sensitive, automated, direct immunoassay for serum estradiol using the Architect. Clin Chim Acta 2008, 388:99-105.
  • [65]Yang DT, Owen WE, Ramsay CS, Xie H, Roberts WL: Performance characteristics of eight estradiol immunoassays. Am J Clin Pathol 2004, 122:332-337.
  • [66]Cao Z, Swift TA, West CA, Rosano TG, Rej R: Immunoassay of estradiol: unanticipated suppression by unconjugated estriol. Clin Chem 2004, 50:160-165.
  • [67]Monnet C, Bettsworth F, Stura EA, Le Du MH, Menez R, Derrien L, Zinn-Justin S, Gilquin B, Sibai G, Battail-Poirot N, Jolivet M, Menez A, Arnaud M, Ducancel F, Charbonnier JB: Highly specific anti-estradiol antibodies: structural characterisation and binding diversity. J Mol Biol 2002, 315:699-712.
  • [68]Hemminki A, Niemi S, Hoffren AM, Hakalahti L, Soderlund H, Takkinen K: Specificity improvement of a recombinant anti-testosterone Fab fragment by CDRIII mutagenesis and phage display selection. Protein Eng 1998, 11:311-319.
  • [69]Valjakka J, Hemminki A, Niemi S, Soderlund H, Takkinen K, Rouvinen J: Crystal structure of an in vitro affinity- and specificity-matured anti-testosterone Fab in complex with testosterone. Improved affinity results from small structural changes within the variable domains. J Biol Chem 2002, 277:44021-44027.
  • [70]Valjakka J, Takkinenz K, Teerinen T, Soderlund H, Rouvinen J: Structural insights into steroid hormone binding: the crystal structure of a recombinant anti-testosterone Fab fragment in free and testosterone-bound forms. J Biol Chem 2002, 277:4183-4190.
  • [71]Kortagere S, Krasowski MD, Ekins S: The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci 2009, 30:138-147.
  文献评价指标  
  下载次数:97次 浏览次数:12次