期刊论文详细信息
BMC Research Notes
EasyLCMS: an asynchronous web application for the automated quantification of LC-MS data
Manuel Cánovas1  José Luis Iborra2  Ana Belén Lozano1  Cristina Bernal2  Ángel Sevilla1  Sergio Fructuoso2 
[1]Inbionova Biotech S.L., Edif. CEEIM, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
[2]Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Apdo. Correos 4021, 30100, Murcia, Spain
关键词: LC distortion;    Web application;    Automated calibration;    Quantitation;    Quantification;    Asynchronous;    Data handling;    LC-MS;    Metabolomics;   
Others  :  1165959
DOI  :  10.1186/1756-0500-5-428
 received in 2012-04-09, accepted in 2012-08-02,  发布年份 2012
PDF
【 摘 要 】

Background

Downstream applications in metabolomics, as well as mathematical modelling, require data in a quantitative format, which may also necessitate the automated and simultaneous quantification of numerous metabolites. Although numerous applications have been previously developed for metabolomics data handling, automated calibration and calculation of the concentrations in terms of μmol have not been carried out. Moreover, most of the metabolomics applications are designed for GC-MS, and would not be suitable for LC-MS, since in LC, the deviation in the retention time is not linear, which is not taken into account in these applications. Moreover, only a few are web-based applications, which could improve stand-alone software in terms of compatibility, sharing capabilities and hardware requirements, even though a strong bandwidth is required. Furthermore, none of these incorporate asynchronous communication to allow real-time interaction with pre-processed results.

Findings

Here, we present EasyLCMS (http://www.easylcms.es/ webcite), a new application for automated quantification which was validated using more than 1000 concentration comparisons in real samples with manual operation. The results showed that only 1% of the quantifications presented a relative error higher than 15%. Using clustering analysis, the metabolites with the highest relative error distributions were identified and studied to solve recurrent mistakes.

Conclusions

EasyLCMS is a new web application designed to quantify numerous metabolites, simultaneously integrating LC distortions and asynchronous web technology to present a visual interface with dynamic interaction which allows checking and correction of LC-MS raw data pre-processing results. Moreover, quantified data obtained with EasyLCMS are fully compatible with numerous downstream applications, as well as for mathematical modelling in the systems biology field.

【 授权许可】

   
2012 Fructuoso et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416035149958.pdf 2356KB PDF download
Figure 7. 35KB Image download
Figure 6. 40KB Image download
Figure 5. 87KB Image download
Figure 4. 96KB Image download
Figure 3. 35KB Image download
Figure 2. 63KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Roux A, Lison D, Junot C, Heilier JF: Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 2011, 44(1):119-135.
  • [2]Carroll AJ, Badger MR, Millar AH: The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics 2010, 11:376. BioMed Central Full Text
  • [3]Katajamaa M, Oresic M: Data processing for mass spectrometry-based metabolomics. J Chromatogr A 2007, 1158:318-328.
  • [4]Pluskal T, Castillo S, Villar-Briones A, Oresic M: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11:395. BioMed Central Full Text
  • [5]Podwojski K, Fritsch A, Chamrad DC, Paul W, Sitek B, Stuhler K, Mutzel P, Stephan C, Meyer HE, Urfer W, et al.: Retention time alignment algorithms for LC/MS data must consider non-linear shifts. Bioinformatics 2009, 25(6):758-764.
  • [6]Voss B, Hanselmann M, Renard BY, Lindner MS, Kothe U, Kirchner M, Hamprecht FA: SIMA: Simultaneous Multiple Alignment of LC/MS Peak Lists. Bioinformatics 2011, 27(7):987-993.
  • [7]Koh YT, Pasikanti KK, Yap CW, Chan ECY: Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J Chromatogr A 2010, 1217(52):8308-8316.
  • [8]Stein SE: An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 1999, 10(8):770-781.
  • [9]Bunk B, Kucklick M, Jonas R, Munch R, Schobert M, Jahn D, Hiller K: MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data. Bioinformatics 2006, 22(23):2962-2965.
  • [10]Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, et al.: Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3(3):211-221.
  • [11]Lee DY, Saha R, Yusufi FNK, Park W, Karimi IA: Web-based applications for building, managing and analysing kinetic models of biological systems. Brief Bioinform 2009, 10(1):65-74.
  • [12]MacDonald M: Pro Silverlight 4 in C# (Expert's Voice in Silverlight). America: United States of; 2010.
  • [13]Silverlight. http://www.silverlight.com webcite
  • [14]Georgitsi M, Viennas E, Antoniou DI, Gkantouna V, van Baal S, Petricoin EF, Poulas K, Tzimas G, Patrinos GP: FINDbase: a worldwide database for genetic variation allele frequencies updated. Nucleic Acids Res 2011, 39:D926-D932.
  • [15]Xia JG, Psychogios N, Young N, Wishart DS: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 2009, 37:W652-W660.
  • [16]Xia JG, Wishart DS: MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 2010, 38:W71-W77.
  • [17]Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A: Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst Biol 2009, 3:82. BioMed Central Full Text
  • [18]Kastenmuller G, Romisch-Margl W, Wagele B, Altmaier E, Suhre K: metaP-Server: a web-based metabolomics data analysis tool. J Biomed Biotechnol 2011.
  • [19]Chen N, Val IJ, Kyriakopoulos S, Polizzi KM, Kontoravdi C: Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol 2011, 23(1):77-82.
  • [20]Castillo S, Gopalacharyulu P, Yetukuri L, Oresic M: Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometrics Intell Lab Syst 2011, 108(1):23-32.
  • [21]Kessner D, Chambers M, Burke R, Agusand D, Mallick P: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24(21):2534-2536.
  • [22]Guidance for Industry: Bioanalytical method validation. Rockville, MD: US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research; 2001.
  • [23]Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A: MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 2008, 24(23):2726-2732.
  • [24]Melamud E, Vastag L, Rabinowitz JD: Metabolomic Analysis and Visualization Engine for LC-MS Data. Anal Chem 2010, 82(23):9818-9826.
  • [25]Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G: XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal Chem 2006, 78(3):779-787.
  • [26]Jiang WX, Qiu YP, Ni Y, Su MM, Jia W, Du XX: An Automated Data Analysis Pipeline for GC-TOF-MS Metabonomics Studies. J Proteome Res 2010, 9(11):5974-5981.
  • [27]Broeckling CD, Reddy IR, Duran AL, Zhao XC, Sumner LW: MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 2006, 78(13):4334-4341.
  • [28]Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M: Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B 2011, 879(32):3859-3870.
  • [29]Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD: Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 2006, 1125(1):76-88.
  • [30]Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T: Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography - Electrospray ionization mass spectrometry. Anal Chem 2006, 78(18):6573-6582.
  • [31]Mendes FD, Chen LS, Borges A, Babadopulos T, Ilha JO, Alkharfy KM, Mendes GD, De Nucci G: Ciprofibrate quantification in human plasma by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry for pharmacokinetic studies. J Chromatogr B 2011, 879(24):2361-2368.
  • [32]Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ: Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C-13-labeled cell extracts as internal standards. Anal Biochem 2005, 336(2):164-171.
  文献评价指标  
  下载次数:59次 浏览次数:14次