期刊论文详细信息
BMC Microbiology
Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans
Bernhard M Fuchs3  Jens Harder2  Shi Yan4  Cathrin Spröer1  Thomas Riedel5  Stefan Spring1 
[1] Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, Braunschweig 38124, Germany;Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen 28359, Germany;Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen 28359, Germany;Present address: Group of Computational Genetics, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai 200433, China;Present address: Observatoire Océanologique de Banyuls, Université P. et M. Curie, UMR-CNRS 7621, Laboratoire Arago, Banyuls-sur-Mer 66650, France
关键词: Coastal marine environment;    Picoplankton;    Mixotroph;    Proteorhodopsin;    Aerobic anoxygenic photoheterotroph;    Phylogeny;   
Others  :  1143690
DOI  :  10.1186/1471-2180-13-118
 received in 2013-01-29, accepted in 2013-05-16,  发布年份 2013
PDF
【 摘 要 】

Background

Aerobic gammaproteobacteria affiliated to the OM60/NOR5 clade are widespread in saline environments and of ecological importance in several marine ecosystems, especially the euphotic zone of coastal areas. Within this group a close relationship between aerobic anoxygenic photoheterotrophs and non-phototrophic members has been found.

Results

Several strains of aerobic red-pigmented bacteria affiliated to the OM60/NOR5 clade were obtained from tidal flat sediment samples at the island of Sylt (North Sea, Germany). Two of the novel isolates, Rap1red and Ivo14T, were chosen for an analysis in detail. Strain Rap1red shared a 16S rRNA sequence identity of 99% with the type strain of Congregibacter litoralis and was genome-sequenced to reveal the extent of genetic microheterogeneity among closely related strains within this clade. In addition, a draft genome sequence was obtained from the isolate Ivo14T, which belongs to the environmental important NOR5-1 lineage that contains so far no cultured representative with a comprehensive description. Strain Ivo14T was characterized using a polyphasic approach and compared with other red-pigmented members of the OM60/NOR5 clade, including Congregibacter litoralis DSM 17192T, Haliea rubra DSM 19751T and Chromatocurvus halotolerans DSM 23344T. All analyzed strains contained bacteriochlorophyll a and spirilloxanthin as photosynthetic pigments. Besides a detailed phenotypic characterization including physiological and chemotaxonomic traits, sequence information based on protein-coding genes and a comparison of draft genome data sets were used to identify possible features characteristic for distinct taxa within this clade.

Conclusions

Comparative sequence analyses of the pufLM genes of genome-sequenced representatives of the OM60/NOR5 clade indicated that the photosynthetic apparatus of these species was derived from a common ancestor and not acquired by multiple horizontal gene transfer from phylogenetically distant species. An affiliation of the characterized bacteriochlorophyll a-containing strains to different genera was indicated by significant phenotypic differences and pufLM nucleotide sequence identity values below 82%. The revealed high genotypic and phenotypic diversity of closely related strains within this phylogenetic group reflects a rapid evolution and frequent niche separation in the OM60/NOR5 clade, which is possibly driven by the necessities of an adaptation to oligotrophic marine habitats.

【 授权许可】

   
2013 Spring et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329191136605.pdf 1472KB PDF download
Figure 3. 188KB Image download
Figure 2. 72KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblížek M, Rathenberg C, Falkowski PG: Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the Ocean. Science 2001, 292:2492-2495.
  • [2]Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Béjà O: Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 2007, 9:1464-1475.
  • [3]Wagner-Döbler I, Biebl H: Environmental biology of the marine Roseobacter lineage. Ann Rev Microbiol 2006, 60:255-280.
  • [4]Yurkov V: Aerobic phototrophic proteobacteria. In The Prokaryotes. Volume 5. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006:562-584.
  • [5]Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF: Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 2002, 415:630-633.
  • [6]Cho J-C, Stapels MD, Morris RM, Vergin KL, Schwalbach MS, Givan SA, Barofsky DF, Giovannoni SJ: Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ Microbiol 2007, 9:1456-1463.
  • [7]Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO, Amann R: Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Sci USA 2007, 104:2891-2896.
  • [8]Spring S, Lünsdorf H, Fuchs BM, Tindall BJ: The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 2009, 4(3):e4866.
  • [9]Cho J-C, Giovannoni SJ: Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 2004, 70:432-440.
  • [10]Rappé MS, Kemp PF, Giovannoni SJ: Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 1997, 42:811-826.
  • [11]Eilers H, Pernthaler J, Peplies J, Glöckner FO, Gerdts G, Amann R: Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 2001, 67:5134-5142.
  • [12]Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, Massana R, Pernthaler J, Pedrós-Alió C, Gasol JM: Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 2007, 60:98-112.
  • [13]Yan S, Fuchs BM, Lenk S, Harder J, Wulf J, Jiao NZ, Amann R: Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Syst Appl Microbiol 2009, 32:124-139.
  • [14]Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P: Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 2007, 9:3091-3099.
  • [15]Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov VV: Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system. Extremophiles 2008, 12:529-539.
  • [16]Jang Y, Oh HM, Kang I, Lee K, Yang SJ, Cho JC: Genome sequence of strain IMCC3088, a proteorhodopsin-containing marine bacterium belonging to the OM60/NOR5 clade. J Bacteriol 2011, 193:3415-3416.
  • [17]Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ: Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 2010, 60:1844-1848.
  • [18]Urios L, Intertaglia L, Lesongeur F, Lebaron P: Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2009, 59:1188-1192.
  • [19]Urios L, Intertaglia L, Lesongeur F, Lebaron P: Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2008, 58:1233-1237.
  • [20]Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A: Halioglobus japonicus gen. nov., sp. nov., and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 2012, 62:1784-1789.
  • [21]Lee YK, Hong SG, Cho HH, Cho KH, Lee HK: Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. J Microbiol 2007, 45:505-509.
  • [22]Park S, Yoshizawa S, Kogure K, Yokota A: Oceanicoccus sagamiensis gen. nov., sp. nov., a gammaproteobacterium isolated from sea water of Sagami Bay in Japan. J Microbiol 2011, 49:233-237.
  • [23]Graeber I, Kaesler I, Borchert MS, Dieckmann R, Pape T, Lurz R, Nielsen P, von Döhren H, Michaelis W, Szewzyk U: Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int J Syst Evol Microbiol 2008, 58:585-590.
  • [24]Li HJ, Zhang XY, Chen CX, Zhang YJ, Gao ZM, Yu Y, Chen XL, Chen B, Zhang YZ: Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface seawater of the Antarctic. Int J Syst Evol Microbiol 2011, 61:2052-2057.
  • [25]Winkelmann N, Harder J: An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods 2009, 77:276-284.
  • [26]Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Béjà O: New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol 2005, 3:e273.
  • [27]Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, Wichels A, Brinkhoff T, Cypionka H, Wagner-Döbler I: Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol 2010, 76:3187-3197.
  • [28]Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ: Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 2011, 6:e19725.
  • [29]Cogdell RJ, Durant I, Valentine J, Lindsay JG, Schmidt K: The isolation and partial characterisation of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila. Biochim Biophys Acta 1983, 722:427-435.
  • [30]McLuskey K, Prince SM, Cogdell RJ, Isaacs NW: The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila Strain 7050. Biochemistry 2001, 40:8783-8789.
  • [31]Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V: Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 2011, 193:573-582.
  • [32]Spring S, Riedel T: Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the cellular redox state. BMC Microbiol 2013, 13:117. BioMed Central Full Text
  • [33]Bonomo J, Gill RT: Amino acid content of recombinant proteins influences the metabolic burden response. Biotechnol Bioeng 2005, 90:116-126.
  • [34]Shand RF, Blum PH, Mueller RD, Riggs DL, Artz SW: Correlation between histidine operon expression and guanosine 5′-diphosphate-3′-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium. J Bacteriol 1989, 171:737-743.
  • [35]Zhang YM, Rock CO: Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 2008, 6:222-233.
  • [36]Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I: Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J 2011, 5:1957-1968.
  • [37]Tank M, Thiel V, Imhoff JF: Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 2009, 12:175-185.
  • [38]Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S: Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol 2012, 14:2661-2672.
  • [39]Thrash JC, Cho JC, Ferriera S, Johnson J, Vergin KL, Giovannoni SJ: Genome sequences of strains HTCC2148 and HTCC2080, belonging to the OM60/NOR5 clade of the Gammaproteobacteria. J Bacteriol 2010, 192:3842-3843.
  • [40]Dufresne A, Garczarek L, Partensky F: Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 2005, 6(2):R14. BioMed Central Full Text
  • [41]Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ: Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005, 309:1242-1245.
  • [42]Maeda T, Hayakawa K, You M, Sasaki M, Yamaji Y, Furushita M, Shiba T: Characteristics of nonylphenol polyethoxylate-degrading bacteria isolated from coastal sediments. Microbes Environ 2005, 20:253-257.
  • [43]Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF: Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 2005, 438:82-85.
  • [44]Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ: The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol 2007, 73:2290-2296.
  • [45]Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J: Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 2010, 8:e1000358.
  • [46]Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ: SAR11 clade dominates ocean surface bacterioplankton communities. Nature 2002, 420:806-810.
  • [47]Ritchie AE, Johnson ZI: Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Appl Environ Microbiol 2012, 78:2858-2866.
  • [48]Schwalbach MS, Fuhrmann JA: Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 2005, 50:620-628.
  • [49]Stackebrandt E, Ebers J: Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006, 33:152-155.
  • [50]Stackebrandt E, Goebel BM: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994, 44:846-849.
  • [51]Pitcher DG, Windsor D, Windsor H, Bradbury JM, Yavari C, Jensen JS, Ling C, Webster D: Mycoplasma amphoriforme sp. nov., isolated from a patient with chronic bronchopneumonia. Int J Syst Evol Microbiol 2005, 55:2589-2594.
  • [52]Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Krader P: Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. Int J Syst Evol Microbiol 2009, 59:1798-1804.
  • [53]Anil Kumar P, Srinivas TN, Thiel V, Tank M, Sasikala C, Ramana CV, Imhoff JF: Thiohalocapsa marina sp. nov., from an Indian marine aquaculture pond. Int J Syst Evol Microbiol 2009, 59:2333-2338.
  • [54]Giammanco GM, Grimont PA, Grimont F, Lefevre M, Giammanco G, Pignato S: Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov. Int J Syst Evol Microbiol 2011, 61:1638-1644.
  • [55]Adékambi T, Drancourt M, Raoult D: The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 2009, 17:37-45.
  • [56]Adékambi T, Shinnick TM, Raoult D, Drancourt M: Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008, 58:1807-1814.
  • [57]Euzéby J: Validation list no. 145: List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012, 62:1017-1019.
  • [58]DSMZ Catalogue Microorganisms http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology.html webcite] (accessed May 15, 2013)
  • [59]Brooks KK, Liang B, Watts JL: The Influence of bacterial diet on fat storage in C. elegans. PLoS ONE 2009, 4(10):e7545.
  • [60]Van der Rest M, Gingras G: The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum. J Biol Chem 1974, 249:6446-6453.
  • [61]Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA: Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in geothermally active area. Int J Syst Evol Microbiol 2006, 56:2603-2608.
  • [62]Identification and characterization of microorganisms and cultures http://www.dsmz.de/services/services-microorganisms/identification.html webcite] (accessed May 15, 2013)
  • [63]Petri R, Podgorsek L, Imhoff JF: Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 2001, 197:171-178.
  • [64]Moore Foundation Microbial Genome Sequencing Project http://camera.calit2.net/microgenome/ webcite] (accessed May 15, 2013)
  • [65]Genomes Online Database http://www.genomesonline.org webcite] (accessed May 15, 2013)
  • [66]GenDB gene annotation system http://www2.cebitec.uni-bielefeld.de/comics/index.php/gendb/ webcite] (accessed May 15, 2013)
  • [67]Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Pühler A: GenDB-an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003, 31:2187-2195.
  • [68]NCBI BLAST tool http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi webcite] (accessed May 15, 2013)
  • [69]GGDC - Genome-To-Genome Distance Calculator http://ggdc.gbdp.org/ webcite] (accessed May 15, 2013)
  • [70]Auch AF, von Jan M, Klenk HP, Göker M: Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010, 2:117-134.
  • [71]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32:1363-1371.
  • [72]Silvestro D, Michalak I: raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 2012, 12:335-337.
  • [73]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [74]Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner F: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35:7188-7196.
  文献评价指标  
  下载次数:17次 浏览次数:12次