期刊论文详细信息
BMC Neuroscience
Ghrelin accelerates synapse formation and activity development in cultured cortical networks
Joost le Feber1  Irina I Stoyanova2 
[1] Clinical Neuro Physiology, Faculty of Applied Natural Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, University of Twente, Enschede, The Netherlands;Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
关键词: Synaptogenesis;    Electrophysiological activity;    GHSR-1a;    Ghrelin;    Dissociated cortical neurons;   
Others  :  799405
DOI  :  10.1186/1471-2202-15-49
 received in 2013-11-22, accepted in 2014-04-14,  发布年份 2014
PDF
【 摘 要 】

Background

While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin’s ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin – growth hormone secretagogue receptor-1a (GHSR-1a) during development.

Results

We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76 ± 4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1–2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls.

Conclusions

Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.

【 授权许可】

   
2014 Stoyanova and le Feber; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140707034557715.pdf 1818KB PDF download
Figure 5. 104KB Image download
Figure 4. 132KB Image download
Fig. 1. 30KB Image download
Figure 2. 54KB Image download
Figure 1. 171KB Image download
【 图 表 】

Figure 1.

Figure 2.

Fig. 1.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kojima M, Hosada H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nat 1999, 402:656-660.
  • [2]Hosoda H, Kojima M, Matsuo H, Kangawa K: Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000, 279(3):909-913.
  • [3]Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K: Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 2001, 86(10):4753-4758.
  • [4]Delhanty PJ, Neggers SJ, Van der Lely AJ: Mechanisms in endocrinology: ghrelin: the differences between acyl- and des-acyl ghrelin. Eur J Endocrinol 2012, 167(5):601-608.
  • [5]Van der Lely AJ, Tschöp M, Heiman ML, Ghigo E: Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004, 25(3):426-457.
  • [6]Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, et al.: A receptor in pituitary and hypothalamus that functions in growth hormone release. Sci 1996, 273(5277):974-977.
  • [7]Chan CB, Cheng CH: Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream Acanthopagrus schlegeli. Mol Cell Endocrinol 2004, 214(1–2):81-95.
  • [8]Takahashi K, Furukawa C, Takano A, Ishikawa N, Kato T, Hayama S, Suzuki C, Yasui W, Inai K, Sone S, Ito T, Nishimura H, Tsuchiya E, Nakamura Y, Daigo Y: The neuromedin U-growth hormone secretagogue receptor 1b/neurotensin receptor 1 oncogenic signaling pathway as a therapeutic target for lung cancer. Cancer Res 2006, 66(19):9408-9419.
  • [9]Kaiya H, Kojima M, Hosoda H, Koda A, Yamamoto K, Kitajima Y, Matsumoto M, Minamitake Y, Kikuyama S, Kangawa K: Bullfrog ghrelin is modified by n-octanoic acid at its third threonine residue. J Biol Chem 2001, 276(44):40441-40448.
  • [10]Kojima M, Kangawa K: Ghrelin: structure and function. Physiol Rev 2005, 85(2):495-522.
  • [11]Tschöp M, Smiley DL, Heiman ML: Ghrelin induces adiposity in rodents. Nat 2000, 407(6806):908-913.
  • [12]Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD: Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral issues. Brain Res Mol Brain Res 1997, 48:23-29.
  • [13]Muccioli G, Ghe C, Ghigo MC, Papotti M, Arvat E, Boghen MF, Nilsson MH, Deghenghi R, Ong H, Ghigo E: Specific receptors for synthetic GH secretagogues in the human brain and pituitary gland. J Endocrinol 1998, 157:99-106.
  • [14]Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK: Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006, 494:528-548.
  • [15]Mitchell V, Bouret S, Beauvillain JC, Schilling A, Perret M, Kordon C, Epelbaum J: Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. J Comp Neurol 2001, 429:469-489.
  • [16]Gahete MD, Rubio A, Córdoba-Chacón J, Gracia-Navarro F, Kineman RD, Avila J, Luque RM, Castaño JP: Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis 2010, 2010(22):819-828.
  • [17]Bron R, Yin L, Russo D, Furness JB: Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol 2013, 521(12):2680-2702.
  • [18]Ghigo E, Arvat E, Giordano R, Broglio F, Gianotti L, Maccario M, Bisi G, Graziani A, Papotti M, Muccioli G, Deghenghi R, Camanni F: Biologic activities of growth hormone secretagogues in humans. Endocrine 2001, 14(1):87-93.
  • [19]Andrews ZB: The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 2011, 34:31-40.
  • [20]Lattuada D, Crotta K, Tonna N, Casnici C, Benfante R, Fornasari D, Bianco F, Longhi R, Marelli O: The expression of GHS-R in primary neurons is dependent upon maturation stage and regional localization. PLoS One 2013, 8(6):e64183.
  • [21]Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M: The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 2002, 87(6):2988.
  • [22]Kaiya H, Kangawa K, Miyazato M: Ghrelin receptors in non-Mammalian vertebrates. Front Endocrinol (Lausanne) 2013, 4:81.
  • [23]Lu S, Guan J-L, Wang QP, Uehara K, Yamada S, Goto N, Date Y, Nakazato M, Kojima M, Shioda S: Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett 2002, 321:157-160.
  • [24]Wada R, Sakata I, Kaiya H, Nakamura K, Hayashi Y, Kangawa K, Sakai T: Existence of ghrelin-immunopositive and -expressing cells in the proventriculus of the hatching and adult chicken. Regul Pept 2003, 111:123-128.
  • [25]Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL: The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003, 37:649-661.
  • [26]Hou Z, Miao Y, Gao L, Pan H, Zhu S: Ghrelin-containing neuron in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat. Regul Pept 2006, 134:126-131.
  • [27]Stoyanova II, Wiertz RW, Rutten WL: Ghrelin expression in dissociated cultures of the rat neocortex. IEEE 2009a, art. no. 5109259:159-162.
  • [28]Stoyanova II, Wiertz RW, Rutten WL: Time-dependent changes in ghrelin-immunoreactivity in dissociated neuronal cultures of the newborn rat neocortex. Regul Pept 2009b, 158:86-90.
  • [29]Tóth K, László K, Lukács E, Lénárd L: Intraamygdaloid microinjection of acylated-ghrelin influences passive avoidance learning. Behav Brain Res 2009, 202:308-311.
  • [30]Tóth K, László K, Lénárd L: Role of intraamygdaloid acylated-ghrelin in spatial learning. Brain Res Bull 2010, 81:33-37.
  • [31]Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A: Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2009, 61:430-481.
  • [32]Tolle V, Bassant MH, Zizzari P, Poindessous-Jazat F, Tomasetto C, Epelbaum J, Bluet-Pajot MT: Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinol 2002, 143:1353-1361.
  • [33]Zhang W, Lin TR, Hu Y, Fan Y, Zhao L, Stuenkel EL, Mulholland MW: Ghrelin stimulates neurogenesis in the dorsal motor nucleus of the vagus. J Physiol 2004, 559(3):729-737.
  • [34]Zhang W, Hu Y, Lin TR, Fan Y, Mulholland MW: Stimulation of neurogenesis in rat nucleus of the solitary tract by ghrelin. Peptides 2005, 26(11):2280-2288.
  • [35]Johansson I, Destefanis S, Aberg ND, Aberg MA, Blomgren K, Zhu C, Ghè C, Granata R, Ghigo E, Muccioli G, Eriksson PS, Isgaard J: Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinol 2008, 149:2191-2199.
  • [36]Moon M, Kim S, Hwang L, Park S: Ghrelin regulates hippocampal neurogenesis in adult mice. Endocr J 2009, 56(3):525-531.
  • [37]Sato M, Nakahara K, Goto S, Kaiya H, Miyazato M, Date Y, Nakazato M, Kangawa K, Murakami N: Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord. Biochem Biophys Res Commun 2006, 350(3):598-603.
  • [38]Inoue Y, Nakahara K, Kangawa K, Murakami N: Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy. Biochem Biophys Res Commun 2010, 393(3):455-460.
  • [39]Diano S, Farr SA, Benoit SC, McNay EC, Silva I, Balazs H, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MT, Horvath TL: Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neurosci 2006, 9:381-388.
  • [40]Berrout L, Isokawa M: Ghrelin promotes reorganization of dendritic spines in cultured rat hippocampal slices. Neurosci Lett 2012, 516(2):280-284.
  • [41]Stoyanova II, le Feber J, Rutten WL: Ghrelin stimulates synaptic formation in cultured cortical networks in a dose-dependent manner. Regul Pept 2013, 186:43-48.
  • [42]Pulman KJ, Fry WM, Cottrell GT, Ferguson AV: The subfornical organ: a central target for circulating feeding signals. J Neurosci 2006, 26(7):2022-2030.
  • [43]Fry M, Ferguson AV: Ghrelin modulates electrical activity of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 2009, 296(3):R485-R492.
  • [44]Dominguez B, Felix R, Monjaraz E: Ghrelin and GHRP-6 enhance electrical and secretory activity in GC somatotropes. Biochem Biophys Res Commun 2007, 358(1):59-65.
  • [45]Song L, Zhu Q, Liu T, Yu M, Xiao K, Kong Q, Zhao R, Li GD, Zhou Y: Ghrelin modulates lateral amygdala neuronal firing and blocks acquisition for conditioned taste aversion. PLoS One 2013, 8(6):e65422.
  • [46]Romijn HJ, van Huizen F, Wolters PS: Towards an improved serum-free, chemically defined medium for long-term culturing of cerebral cortex tissue. Neurosci Biobehav Rev 1984, 8:301-334.
  • [47]Yanagida H, Morita T, Kim J, Yoshida K, Nakajima K, Oomura Y, Wayner MJ, Sasaki K: Effects of ghrelin on neuronal activity in the ventromedial nucleus of the hypothalamus in infantile rats: an in vitro study. Peptides 2008, 29(6):912-918.
  • [48]Hsu SM, Raine L, Fanger H: Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981, 29:577-580.
  • [49]Ljungdahl A, Hökfelt T, Nilsson G: Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I. Cell bodies and nerve terminals. Neurosci 1978, 3:861-943.
  • [50]Martinoia S, Bonzano L, Chiappalone M, Tedesco M, Marcoli M, Maura G: In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosens Bioelectron 2005, 20(10):2071-2078.
  • [51]Tessier CR, Broadie K: Activity-dependent modulation of neural circuit synaptic connectivity. Front Mol Neurosci 2009, 2:8. doi:10.3389/neuro.02.008.2009
  • [52]Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH: Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks–an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002, 26:127-185.
  • [53]Corner MA: Spontaneous motor rhythms in early life - phenomenological and physiological aspects. Prog Brain Res 1978, 48:349-364.
  • [54]Van Pelt J, Wolters PS, Corner MA, Rutten WLC, Ramakers GJA: Long-term characterisation of firing dynamics of spontaneous bursts in cultured neural networks. IEEE 2004, 51:2051-2062.
  • [55]Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S: Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 2006, 1093:41-53.
  • [56]Stegenga J, le Feber J, Marani E, Rutten WLC: Analysis of cultured neuronal networks using intra-burst firing characteristics. IEEE Trans Biomed Eng 2008, 55(4):1382-1390.
  • [57]Kamioka H, Maeda E, Jimbo Y, Robinson HPC, Kawana A: Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci Lett 1996, 206:109-112.
  • [58]Corner MA, Mirmiran M: Spontaneous neuronal firing patterns in the occipital cortex of developing rats. Int J Dev Neurosci 1990, 1990(8):309-316.
  • [59]Corner MA, Van Eden CG, De Beaufort AJ: Spike-train analysis reveals “overshoot” in developing rat prefrontal cortex function. Brain Res Bull 1992, 28:799-802.
  • [60]Droge MH, Gross GW, Hightower MH, Czisny LE: Multielectrode analysis of coordinated, multisite, rhythmic bursting in cultured CNS monolayer networks. J Neurosci 1986, 6(6):1583-1592.
  • [61]Romijn HJ, Habets M, Mud MT, Wolters PS: Nerve outgrowth, synaptogenesis and bioelectric activity in fetal rat cerebral cortex tissue cultured in serum-free, chemically defined medium. Develop Brain Res 1981, 2:583-589.
  • [62]Voigt T, Opitz T, de Lima AD: Activation of early silent synapses by spontaneous synchronous network activity limits the range of network connections. J Neurosci 2005, 25:4605-4615.
  • [63]Van Huizen F, Romijn HJ, Habets AM: Synaptogenesis in rat cerebral cortexcultures is affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin. Brain Res 1985, 351(1):67-80.
  • [64]Ghosh A, Carnahan J, Greenberg ME: Requirement for BDNF in activity-dependent survival of cortical neurons. Sci 1994, 263(5153):1618-1623.
  • [65]Kojima M, Hosoda H, Matsuo H, Kangawa K: Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 2001, 12(3):118-122.
  • [66]Hosoda H, Kojima M, Kangawa K: Biological, physiological, and pharmacological aspects of ghrelin. J Pharmacol Sci 2006, 100(5):398-410.
  • [67]Herrington J, Hille B: Growth hormone-releasing hexapeptide elevates intracellular calcium in rat somatotropes by two mechanisms. Endocrinol 1994, 135(3):1100-1108.
  • [68]Adams EF, Petersen B, Lei T, Buchfelder M, Fahlbusch R: The growth hormone secretagogue, L-692,429, induces phosphatidylinositol hydrolysis and hormone secretion by human pituitary tumors. Biochem Biophys Res Commun 1995, 208(2):555-561.
  • [69]Petersenn S: Structure and regulation of the growth hormone secretagogue receptor. Minerva Endocrinol 2002, 27(4):243-256.
  • [70]Lyons MR, West AE: Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011, 94(3):259-295.
  • [71]Serra M, Guaraldi M, Shea TB: Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling. Phys Biol 2010, 7(2):026009.
  • [72]Bartolini G, Ciceri G, Marín O: Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 2013, 79(5):849-864.
  • [73]Ben-Ari Y: Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 2002, 3:728-739.
  • [74]Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL: Giant synaptic potentials in immature rat CA3 hippocampal neurons. J Physiol 1989, 416:303-325.
  • [75]Van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D: Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci 2004, 7(5):493-494.
  • [76]Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP: Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 2007, 6:1749-1760.
  • [77]Cline H: Synaptogenesis: a balancing act between excitation and inhibition. Curr Biol 2005, 15:R203-R205.
  • [78]Ehrlich I, Malinow R: Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 2004, 24:916-927.
  • [79]Zhang ZW, Peterson M, Liu H: Essential role of postsynaptic NMDA receptors in developmental refinement of excitatory synapses. Proc Natl Acad Sci U S A 2013, 110(3):1095-1100.
  • [80]Bourgeois JP, Rakic P: Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 1993, 13(7):2801-2820.
  • [81]Selemon LD: A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry 2013, 3:e238.
  • [82]Nelson SB, Turrigiano GG: Synaptic depression: a key player in the cortical balancing act. Nat Neurosci 1998, 1(7):539-541.
  • [83]Turrigiano GG: The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 2008, 135(3):422-435.
  • [84]Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M: Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci 2009, 12:1577-1585.
  • [85]Zhang Z, Jiao YY, Sun QQ: Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex. Neurosci 2011, 174:10-25.
  • [86]Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S: Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinol 2007, 148(1):148-159.
  • [87]Miao Y, Xia Q, Hou Z, Zheng Y, Pan H, Zhu S: Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem Biophys Res Commun 2007, 359(3):795-800.
  文献评价指标  
  下载次数:26次 浏览次数:23次