期刊论文详细信息
BMC Genomics
Systematic permutation testing in GWAS pathway analyses: identification of genetic networks in dilated cardiomyopathy and ulcerative colitis
Andreas Keller5  Benjamin Meder3  Hugo Katus3  Eckart Meese1  Hans-Peter Lenhof8  Wanda Kloos3  Tanja Weis3  H-Erich Wichmann2  Wolfgang Lieb6  Andre Franke7  Karen Frese3  Jan Haas3  Monika Stoll4  Frank Rühle4  Christina Backes5 
[1]Department of Human Genetics, Saarland University, Saarbrücken, Germany
[2]Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Germany
[3]German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
[4]Department of Genetic Epidemiology, University Münster, Münster, Germany
[5]Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
[6]Institute of Epidemiology and Biobank popgen, Christian-Albrechts-University Kiel, Kiel, Germany
[7]Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
[8]Chair for Bioinformatics, Saarland University, Saarbrücken, Germany
关键词: Pathway analysis;    Permutation tests;    GWAS;    UC;    DCM;   
Others  :  1216414
DOI  :  10.1186/1471-2164-15-622
 received in 2014-03-10, accepted in 2014-07-17,  发布年份 2014
PDF
【 摘 要 】

Background

Genome wide association studies (GWAS) are applied to identify genetic loci, which are associated with complex traits and human diseases. Analogous to the evolution of gene expression analyses, pathway analyses have emerged as important tools to uncover functional networks of genome-wide association data. Usually, pathway analyses combine statistical methods with a priori available biological knowledge. To determine significance thresholds for associated pathways, correction for multiple testing and over-representation permutation testing is applied.

Results

We systematically investigated the impact of three different permutation test approaches for over-representation analysis to detect false positive pathway candidates and evaluate them on genome-wide association data of Dilated Cardiomyopathy (DCM) and Ulcerative Colitis (UC). Our results provide evidence that the gold standard - permuting the case–control status – effectively improves specificity of GWAS pathway analysis. Although permutation of SNPs does not maintain linkage disequilibrium (LD), these permutations represent an alternative for GWAS data when case–control permutations are not possible. Gene permutations, however, did not add significantly to the specificity. Finally, we provide estimates on the required number of permutations for the investigated approaches.

Conclusions

To discover potential false positive functional pathway candidates and to support the results from standard statistical tests such as the Hypergeometric test, permutation tests of case control data should be carried out. The most reasonable alternative was case–control permutation, if this is not possible, SNP permutations may be carried out. Our study also demonstrates that significance values converge rapidly with an increasing number of permutations. By applying the described statistical framework we were able to discover axon guidance, focal adhesion and calcium signaling as important DCM-related pathways and Intestinal immune network for IgA production as most significant UC pathway.

【 授权许可】

   
2014 Backes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630103902913.pdf 1839KB PDF download
Figure 6. 52KB Image download
Figure 5. 88KB Image download
Figure 4. 89KB Image download
Figure 3. 177KB Image download
Figure 2. 65KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308(5720):385-389.
  • [2]Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA: Complement factor H variant increases the risk of age-related macular degeneration. Science 2005, 308(5720):419-421.
  • [3]Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009, 106(23):9362-9367.
  • [4]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466(7307):707-713.
  • [5]Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P, Owen MJ, O’Donovan MC, Craddock N: Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am J Hum Genet 2009, 85(1):13-24.
  • [6]Khatri P, Sirota M, Butte AJ: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012, 8(2):e1002375.
  • [7]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
  • [8]Keller A, Backes C, Lenhof HP: Computation of significance scores of unweighted Gene Set Enrichment Analyses. BMC Bioinformatics 2007, 8:290. BioMed Central Full Text
  • [9]Wang K, Li M, Bucan M: Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 2007, 81(6):1278-1283.
  • [10]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [11]Keller A, Backes C, Gerasch A, Kaufmann M, Kohlbacher O, Meese E, Lenhof HP: A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis. Bioinformatics 2009, 25(21):2787-2794.
  • [12]Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res 2007, 17(10):1537-1545.
  • [13]Shojaie A, Michailidis G: Analysis of gene sets based on the underlying regulatory network. J Comput Biol 2009, 16(3):407-426.
  • [14]Rahnenfuhrer J, Domingues FS, Maydt J, Lengauer T: Calculating the statistical significance of changes in pathway activity from gene expression data. Stat Appl Genet Mol Biol 2004, 3:Article16.
  • [15]Backes C, Rurainski A, Klau GW, Muller O, Stockel D, Gerasch A, Kuntzer J, Maisel D, Ludwig N, Hein M, Keller A, Burtscher H, Kaufmann M, Meese E, Lenhof HP, Keller A, Burtscher H, Kaufmann M, Meese E, Lenhof HP: An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res 2012, 40(6):e43.
  • [16]Stockel D, Muller O, Kehl T, Gerasch A, Backes C, Rurainski A, Keller A, Kaufmann M, Lenhof HP: NetworkTrail--a web service for identifying and visualizing deregulated subnetworks. Bioinformatics 2013, 29(13):1702-1703.
  • [17]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [18]Karp PD, Riley M, Paley SM, Pellegrini-Toole A: The MetaCyc Database. Nucleic Acids Res 2002, 30(1):59-61.
  • [19]Joshi-Tope G, Vastrik I, Gopinath GR, Matthews L, Schmidt E, Gillespie M, D’Eustachio P, Jassal B, Lewis S, Wu G, Birney E, Stein L, Birney E, Stein L: The Genome Knowledgebase: a resource for biologists and bioinformaticists. Cold Spring Harb Symp Quant Biol 2003, 68:237-243.
  • [20]Braun R, Buetow K: Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet 2011, 7(6):e1002101.
  • [21]Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield JA, Rice JP: SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study. Nucleic Acids Res 2010, 38(Web Server issue):W201-209.
  • [22]Gui H, Li M, Sham PC, Cherny SS: Comparisons of seven algorithms for pathway analysis using the WTCCC Crohn’s Disease dataset. BMC research notes 2011, 4:386. BioMed Central Full Text
  • [23]Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X, Song H, Chen Z: Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 2012, 120(1):190-198.
  • [24]Wang K, Li M, Hakonarson H: Analysing biological pathways in genome-wide association studies. Nat Rev Genet 2010, 11(12):843-854.
  • [25]Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Muller R, Meese E, Lenhof HP: GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res 2007, 35(Web Server issue):W186-192.
  • [26]Keller A, Backes C, Al-Awadhi M, Gerasch A, Kuntzer J, Kohlbacher O, Kaufmann M, Lenhof HP: GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC bioinformatics 2008, 9:552. BioMed Central Full Text
  • [27]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995, 57(1):289-300.
  • [28]Wei P, Tang H, Li D: Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data. PLoS One 2012, 7(10):e46887.
  • [29]Liu Y, Maxwell S, Feng T, Zhu X, Elston RC, Koyuturk M, Chance MR: Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. BMC Syst Biol 2012, 6(Suppl 3):S15. BioMed Central Full Text
  • [30]Zhang TX, Beaty TH, Ruczinski I: Candidate pathway based analysis for cleft lip with or without cleft palate. Stat Appl Genet Mol Biol 2012, 11(2):1-19.
  • [31]Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich I: Fewer permutations, more accurate P-values. Bioinformatics 2009, 25(12):i161-168.
  • [32]Efron B, Tibshirani R: On testing the significance of sets of genes. Annals of Applied Statistics 2007, 1(1):107-129.
  • [33]Kresh JY, Chopra A: Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Archiv: European journal of physiology 2011, 462(1):75-87.
  • [34]Bendig G, Grimmler M, Huttner IG, Wessels G, Dahme T, Just S, Trano N, Katus HA, Fishman MC, Rottbauer W: Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 2006, 20(17):2361-2372.
  • [35]Meder B, Huttner IG, Sedaghat-Hamedani F, Just S, Dahme T, Frese KS, Vogel B, Kohler D, Kloos W, Rudloff J, Marquart S, Katus HA, Rottbauer W, Marquart S, Katus HA, Rottbauer W: PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling. Mol Cell Biol 2011, 31(16):3424-3435.
  • [36]Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004, 432(7016):466-472.
  • [37]Manso AM, Kang SM, Ross RS: Integrins, focal adhesions, and cardiac fibroblasts. J Investig Med 2009, 57(8):856-860.
  • [38]Ferguson DW, Berg WJ, Sanders JS: Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 1990, 16(5):1125-1134.
  • [39]Floras JS: Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 2009, 54(5):375-385.
  • [40]Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DY, Srivastava D, Woo S: A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 2011, 138(7):1409-1419.
  • [41]Medioni C, Bertrand N, Mesbah K, Hudry B, Dupays L, Wolstein O, Washkowitz AJ, Papaioannou VE, Mohun TJ, Harvey RP, Zaffran S, Zaffran S: Expression of Slit and Robo genes in the developing mouse heart. Dev Dyn 2010, 239(12):3303-3311.
  • [42]Damon DH: Vascular endothelial-derived semaphorin 3 inhibits sympathetic axon growth. Am J Physiol Heart Circ Physiol 2006, 290(3):H1220-1225.
  • [43]Mommersteeg MT, Andrews WD, Ypsilanti AR, Zelina P, Yeh ML, Norden J, Kispert A, Chedotal A, Christoffels VM, Parnavelas JG: Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circ Res 2013, 112(3):465-475.
  • [44]Miwa K, Lee JK, Takagishi Y, Opthof T, Fu X, Hirabayashi M, Watabe K, Jimbo Y, Kodama I, Komuro I: Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF). PLoS One 2013, 8(7):e65202.
  • [45]Vanburen P, Ma J, Chao S, Mueller E, Schneider DJ, Liew CC: Blood gene expression signatures associate with heart failure outcomes. Physiol Genomics 2011, 43(8):392-397.
  • [46]Fagarasan S, Honjo T: Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 2003, 3(1):63-72.
  • [47]Brandtzaeg P: Secretory IgA: designed for anti-microbial defense. Frontiers in immunology 2013, 4:222.
  • [48]Kelly D, Mulder IE: Microbiome and immunological interactions. Nutr Rev 2012, 70(Suppl 1):S18-30.
  • [49]Meder B, Ruhle F, Weis T, Homuth G, Keller A, Franke J, Peil B, Lorenzo Bermejo J, Frese K, Huge A, Witten A, Vogel B, Haas J, Volker U, Ernst F, Teumer A, Ehlermann P, Zugck C, Friedrichs F, Kroemer H, Dorr M, Hoffmann W, Maisch B, Pankuweit S, Ruppert V, Scheffold T, Kuhl U, Schultheiss HP, Kreutz R, Ertl G: A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 2014, 35(16):1069-1077.
  • [50]Devlin B, Roeder K: Genomic control for association studies. Biometrics 1999, 55(4):997-1004.
  • [51]Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, Laerdahl JK, Shiryaev A, Gotthardt DN, Weismuller TJ, Schramm C, Wittig M, Bergquist A, Bjornsson E, Marschall HU, Vatn M, Teufel A, Rust C, Gieger C, Wichmann HE, Runz H, Sterneck M, Rupp C, Braun F, Weersma RK, Wijmenga C, Ponsioen CY, Mathew CG, Rutgeerts P, Vermeire S: Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 2013, 58(3):1074-1083.
  • [52]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [53]Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000, 28(1):316-319.
  文献评价指标  
  下载次数:30次 浏览次数:24次