期刊论文详细信息
BMC Microbiology
Antibiotic producing microorganisms from River Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea Beach, Ghana
Kofi Annan1  Vivian E Boamah2  Francis Adu2  Stephen Y Gbedema2  Adelaide A Tawiah2 
[1] Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and technology, Kumasi, Ghana;Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and technology, Kumasi, Ghana
关键词: Multi-drug resistance;    Ghana;    Antibiotics;    Aquatic microorganisms;   
Others  :  1221708
DOI  :  10.1186/1471-2180-12-234
 received in 2012-02-20, accepted in 2012-09-27,  发布年份 2012
【 摘 要 】

Background

Microorganisms have provided a wealth of metabolites with interesting activities such as antimicrobial, antiviral and anticancer. In this study, a total of 119 aquatic microbial isolates from 30 samples (taken from water bodies in Ghana) were screened by the agar-well diffusion method for ability to produce antibacterial-metabolites.

Results

Antibacterial activity was exhibited by 27 of the isolates (14 bacteria, 9 actinomycetes and 4 fungi) against at least one of the indicator microorganisms: Enterococcus faecalis (ATCC 29212), Bacillus thuringiensis (ATCC 13838), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Proteus vulgaris (NCTC 4635) and Bacillus Subtilis (NCTC 10073). A sea isolate MAI2 (identified as a strain of Pseudomonas aeruginosa) exhibited the highest antibacterial activity (lowest zone of inhibition = 22 mm). The metabolites of MAI2 extracted with chloroform were stable to heat and gave minimum inhibitory concentrations ranging between 250 and 2000 μg/ml. Bioautography of the extract revealed seven active components.

Conclusion

This study has therefore uncovered the potential of water bodies in the West African sub-region as reservoirs of potent bioactive metabolite producing microorganisms.

【 授权许可】

   
2012 Tawiah et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Fig. 7. 60KB Image download
Figure 6. 32KB Image download
Figure 5. 31KB Image download
Figure 4. 27KB Image download
Figure 3. 38KB Image download
Figure 2. 43KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Fig. 7.

【 参考文献 】
  • [1]Fenical W: Chemical studies of marine bacteria: developing a new resource. Chem Rev 1993, 93(5):1673-1683.
  • [2]Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M: Antibiotic resistance – the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 2003, 3:47-51.
  • [3]Bhavnani SM, Ballow CH: New agents for Gram-positive bacteria. Curr Op Microbiol 2000, 3:528-534.
  • [4]Mincer TJ, Jensen PR, Kauffman CA, Fenical W: Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 2002, 68(10):5005-5011.
  • [5]Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC: Identification of active methylotroph populations in an acidic forest soil by stable isotope probing. Microbiol 2002, 148:2331-2342.
  • [6]Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K: Marine Actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 2008, 3(6):e2335.
  • [7]Nostro A, Germanò M, D’Angelo V, Marino A, Cannatelli M: Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 2000, 30:379-384.
  • [8]Barrow GI, Felthan RKA: Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd edition. Cambridge University Press, Cambridge UK; 2003:351-353.
  • [9]Ivanova EP, Nicolau DV, Yumoto N, Taguchi T: Impact of conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Mar Biol 1998, 130:545-551.
  • [10]Zheng L, Chen H, Han X, Lin W, Yan X: Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol 2005, 21:201-206.
  • [11]Brandelli A, Cladera-Olivera F, Motta SA: Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. Braz J Microbiol 2004, 35:307-310.
  • [12]O’Brien A, Sharp R, Russell NJ, Roller S: Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 2004, 48(2):157-167.
  • [13]Ampofo AJ: A survey of microbial pollution of rural domestic water supply in Ghana. Int J Environ Heal Res 1997, 7(2):121-130.
  • [14]Boadi KO, Kuitumen M: Urban waste pollution in the Korle Lagoon, Accra, Ghana. Environmentalist 2002, 22(4):301-309.
  • [15]Katte VY, Fonteh MF, Guemuh GN: Domestic water quality in urbancentres in Cameroon: a case study of Dschang in the West Province. African Water Journal 2003, 1:43-51.
  • [16]Fianko JR, Osae S, Adomako D, Adotey DK, Serfo-Armah Y: Assessment of heavy metal pollution of the Iture Estuary in the Central region of Ghana. Environ Monit Assess 2007, 131(1–3):467-473.
  • [17]Giudice AL, Bruni V, Michaud L: Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 2007, 47:496-505.
  • [18]Bushell M, Grafe U: Bioactive metabolites from microorganisms. Industrial Microbiology 1989, 27:402-418.
  • [19]Preetha RSJ, Prathapan S, Vijayan KK, Jayaprakash SN, Philip R, Singh BS: An inhibitory compound produced by Pseudomonas with effectiveness on Vibrio harveyi. Aquac Res 2009, 41:1452-1461.
  • [20]Uzair B, Ahmed N, Kousar F, Edwards DH: Isolation and characterization of Pseudomonas strain that inhibit growth of indigenous and clinical isolates. The Internet Journal of Microbiology 2006, 2(2): . Available at: http://www.ispub.com/journal/the-internet-journal-of-microbiology webcite
  • [21]Roitman J, Mahoney N, Janisiewicz W: Production and composition of phenylpyrrole metabolites produced by Pseudomonas cepacia. Appl Microbiol Biotechnol 1990, 34:381-386.
  • [22]Price-Whelan A, Dietrich LEP, Newman DK: Rethinking secondary metabolism: Physiological roles for phenazine antibiotics. Nat Chem Biol 2006, 2:71-78.
  • [23]Sole M, Francia A, Rius N, Loren JG: The role of pH in the glucose effet on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Applied Microbiol 1997, 25:81-84.
  • [24]Merrick MJ, Edwards RA: Nitrogen control in bacteria. Microbiol Rev 1995, 59:604-622.
  • [25]Shapiro S: Nitrogen assimilation in Actinomycetes and the influence of nitrogen nutrition on Actinomycetes secondary metabolism. In Regulation of Secondary Metabolism in Actinomycetes. Edited by Shapiro S. CRC Press, Boca Raton, Florida; 1989:135-211.
  • [26]Charyulu ME, Gnanamani A: Condition stabilization for Pseudomonas aeruginosa MTCC 5210 to yield high Titres of extra cellular antimicrobial secondary metabolite using response surface methodology. Current Research in Bacteriology 2010, 4:197-213.
  • [27]Garland PB: Energy transduction in microbial systems. Symp Soc Gen Microbiol 1977, 27:1-21.
  • [28]Riebeling V, Thauer RK, Jungermann K: Internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem 1975, 55:445-453.
  • [29]Chang SC, Wei YH, Wei DL, Chen YY, Jong SC: Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti. Appl Environ Microbiol 1991, 57:2581-2585.
  • [30]Gibbons S: Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev 2005, 4:63-78.
  • [31]Annan K, Adu F, Gbedema SY: Friedelin: a bacterial resistance modulator from Paullinia pinnata L. J Sci Technol 2009, 29(1):152-159.
  • [32]Pankey GA, Sabath LD: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004, 38(6):864-870.
  • [33]Van Lagevelde P, Van Dissel JT, Meurs CJC, Renz J, Groeneveld PHP: Combination of flucloxacillin and gentamicin inhibits toxic shock syndrome toxin 1 production by Staphylococcus aureus in both logarithmic and stationary phases of growth. Antimicrob Agents Chemother 1997, 41:1682-1685.
  • [34]Russell NE, Pachorek RE: Clindamycin in the treatment of streptococcal and staphylococcal toxic shock syndromes. Ann Pharmacother 2000, 34(7–8):936-939.
  文献评价指标  
  下载次数:64次 浏览次数:7次