期刊论文详细信息
BMC Systems Biology
Computational estimation of tricarboxylic acid cycle fluxes using noisy NMR data from cardiac biopsies
Johannes H G M van Beek4  A B Johan Groeneveld1  Thomas W Binsl3  Jaap Heringa4  David J C Alders2  Hannes Hettling4 
[1] Department of Intensive Care, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands;Department of Anesthesiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands;Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, de Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands;Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
关键词: 13C metabolic flux analysis;    Sensitivity analysis;    Metabolomics;    Metabolic modeling;    Cardiac physiology;   
Others  :  1142342
DOI  :  10.1186/1752-0509-7-82
 received in 2013-01-31, accepted in 2013-08-15,  发布年份 2013
PDF
【 摘 要 】

Background

The aerobic energy metabolism of cardiac muscle cells is of major importance for the contractile function of the heart. Because energy metabolism is very heterogeneously distributed in heart tissue, especially during coronary disease, a method to quantify metabolic fluxes in small tissue samples is desirable. Taking tissue biopsies after infusion of substrates labeled with stable carbon isotopes makes this possible in animal experiments. However, the appreciable noise level in NMR spectra of extracted tissue samples makes computational estimation of metabolic fluxes challenging and a good method to define confidence regions was not yet available.

Results

Here we present a computational analysis method for nuclear magnetic resonance (NMR) measurements of tricarboxylic acid (TCA) cycle metabolites. The method was validated using measurements on extracts of single tissue biopsies taken from porcine heart in vivo. Isotopic enrichment of glutamate was measured by NMR spectroscopy in tissue samples taken at a single time point after the timed infusion of 13C labeled substrates for the TCA cycle. The NMR intensities for glutamate were analyzed with a computational model describing carbon transitions in the TCA cycle and carbon exchange with amino acids. The model dynamics depended on five flux parameters, which were optimized to fit the NMR measurements. To determine confidence regions for the estimated fluxes, we used the Metropolis-Hastings algorithm for Markov chain Monte Carlo (MCMC) sampling to generate extensive ensembles of feasible flux combinations that describe the data within measurement precision limits. To validate our method, we compared myocardial oxygen consumption calculated from the TCA cycle flux with in vivo blood gas measurements for 38 hearts under several experimental conditions, e.g. during coronary artery narrowing.

Conclusions

Despite the appreciable NMR noise level, the oxygen consumption in the tissue samples, estimated from the NMR spectra, correlates with blood-gas oxygen uptake measurements for the whole heart. The MCMC method provides confidence regions for the estimated metabolic fluxes in single cardiac biopsies, taking the quantified measurement noise level and the nonlinear dependencies between parameters fully into account.

【 授权许可】

   
2013 Hettling et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328034535790.pdf 529KB PDF download
Figure 4. 39KB Image download
Figure 3. 54KB Image download
Figure 2. 28KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sauer U: Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2006, 2:62.
  • [2]Chance EM, Seeholzer SH, Kobayashi K, Williamson JR: Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 1983, 258(22):13785-13794.
  • [3]Malloy CR, Sherry AD, Jeffrey FM: Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. Am J Physiol Heart Circ Physiol 1990, 259(3 Pt 2):H987-H995.
  • [4]Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, Clarke K, Radda GK, Tyler DJ: Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 2009, 23(8):2529-2538.
  • [5]van Beek JH, Csont T, de Kanter FJ, Bussemaker J: Simple model analysis of 13C NMR spectra to measure oxygen consumption using frozen tissue samples. Adv Exp Med Biol 1998, 454:475-485.
  • [6]van Beek JH, van Mil HG, King RB, de Kanter FJ, Alders DJ, Bussemaker J: A (13)C NMR double-labeling method to quantitate local myocardial O(2) consumption using frozen tissue samples. Am J Physiol 1999, 277(4 Pt 2):H1630-H1640.
  • [7]Alders DJC, Cornelussen RN, Prinzen FW, Specht PAC, Noble MIM, Drake-Holland AJ, de Kanter FJJ, van Beek JHGM: Regional sympathetic denervation affects the relation between canine local myocardial blood flow and oxygen consumption. Exp Physiol 2007, 92(3):541-548.
  • [8]Binsl TW, Alders DJC, Heringa J, Groeneveld ABJ, van Beek JHGM: Computational quantification of metabolic fluxes from a single isotope snapshot: application to an animal biopsy. Bioinformatics 2010, 26(5):653-660.
  • [9]Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 2004, 1(3–4):184-195.
  • [10]Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 2007, 3(10):1871-1878.
  • [11]Schellenberger J, Palsson BØ: Use of randomized sampling for analysis of metabolic networks. J Biol Chem 2009, 284(9):5457-5461.
  • [12]Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W: 13CFLUX2 - High-Performance Software Suite for 13C-Metabolic Flux Analysis. Bioinformatics 2013, 29(1):43-45.
  • [13]Kadirkamanathan V, Yang J, Billings SA, Wright PC: Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum. Bioinformatics 2006, 22(21):2681-2687.
  • [14]Quek L-E, Wittmann C, Nielsen LK, Krömer JO: OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 2009, 8:25. BioMed Central Full Text
  • [15]Yang J, Wongsa S, Kadirkamanathan V, Billings SA, Wright PC: Metabolic flux distribution analysis by 13C-tracer experiments using the Markov chain-Monte Carlo method. Biochem Soc Trans 2005, 33(Pt 6):1421-1422.
  • [16]Schellenberger J, Zielinski DC, Choi W, Madireddi S, Portnoy V, Scott DA, Reed JL, Osterman AL, Palsson BO: Predicting outcomes of steady-state 13C isotope tracing experiments with Monte Carlo sampling. BMC Syst Biol 2012, 6:9. BioMed Central Full Text
  • [17]Antoniewicz MR, Kelleher JK, Stephanopoulos G: Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 2006, 8(4):324-337.
  • [18]Alders DJC, Groeneveld ABJ, de Kanter FJJ, van Beek JHGM: Myocardial O2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O2 delivery. Am J Physiol Heart Circ Physiol 2004, 287(3):H1353-H1361.
  • [19]Malloy CR, Jones JG, Jeffrey FM, Jessen ME, Sherry AD: Contribution of various substrates to total citric acid cycle flux and anaplerosis as determined by 13C isotopomer analysis and O2 consumption in the heart. Magma (New York, N.Y.) 1996, 4:35-46.
  • [20]Randle PJ, England PJ, Denton RM: Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J 1970, 117(4):677-695.
  • [21]Hettling H, van Beek JHGM: Analyzing the Functional Properties of the Creatine Kinase System with Multiscale “Sloppy” Modeling. PLoS Comput Biol 2011, 7(8):e1002130.
  • [22]Jeffrey FMH, Reshetov A, Storey CJ, Carvalho RA, Sherry AD, Malloy CR: Use of a single 13C NMR resonance of glutamate for measuring oxygen consumption in tissue. Am J Physiol 1999, 277(6 Pt 1):E1111-E1121.
  • [23]Nuutinen EM, Peuhkurinen KJ, Pietiläinen EP, Hiltunen JK, Hassinen IE: Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J 1981, 194(3):867-875.
  • [24]Yu X, White LT, Doumen C, Damico LA, LaNoue KF, Alpert NM, Lewandowski ED: Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts. Biophys J 1995, 69(5):2090-2102.
  • [25]Weiss RG, Chacko VP, Glickson JD, Gerstenblith G: Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci U S A 1989, 86(16):6426-6430.
  • [26]Lloyd SG, Wang P, Zeng H, Chatham JC: Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart. Am J Physiol Heart Circ Physiol 2004, 287(1):H351-H362.
  • [27]Rosenthal JS: AMCMC: An R interface for adaptive MCMC. Comput Stat Data Anal 2007, 51:5467-5470.
  • [28]Finley AO, Banerjee S, Carlin BP: spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. J Stat Softw 2007, 19(4):1-24.
  • [29]Chatham JC, Forder JR, Glickson JD, Chance EM: Calculation of absolute metabolic flux and the elucidation of the pathways of glutamate labeling in perfused rat heart by 13C NMR spectroscopy and nonlinear least squares analysis. J Biol Chem 1995, 270(14):7999-8008.
  • [30]Robitaille PM, Rath DP, Abduljalil AM, O’Donnell JM, Jiang Z, Zhang H, Hamlin RL: Dynamic 13C NMR analysis of oxidative metabolism in the in vivo canine myocardium. J Biol Chem 1993, 268(35):26296-26301.
  • [31]Weiss HR, Sinha AK: Regional oxygen saturation of small arteries and veins in the canine myocardium. Circ Res 1978, 42:119-126.
  • [32]Reeder SB, Holmes AA, McVeigh ER, Forder JR: Simultaneous noninvasive determination of regional myocardial perfusion and oxygen content in rabbits: toward direct measurement of myocardial oxygen consumption at MR imaging. Radiology 1999, 212:739-747.
  • [33]Kofoed K, Hansen P, Holm S, Hove J, Chen K, Jin W, Jensen M, Iida H, Hesse B, Svendsen J: Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia. J Nucl Cardiol 2000, 7:228-234.
  • [34]Martini WZ, Stanley WC, Huang H, Rosiers CD, Hoppel CL, Brunengraber H: Quantitative assessment of anaplerosis from propionate in pig heart in vivo. Am J Physiol Endocrinol Metab 2003, 284(2):E351-E356.
  • [35]Panchal AR, Comte B, Huang H, Kerwin T, Darvish A, des Rosiers C, Brunengraber H, Stanley WC: Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. Am J Physiol Heart Circ Physiol 2000, 279(5):H2390-H2398.
  • [36]Panchal AR, Comte B, Huang H, Dudar B, Roth B, Chandler M, Des Rosiers C, Brunengraber H, Stanley WC: Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am J Physiol Heart Circ Physiol 2001, 281(4):H1613-H1620.
  • [37]Cohen DM, Bergman RN: Improved estimation of anaplerosis in heart using 13C NMR. Am J Physiol Endocrinol Metab 1997, 273(6 Pt 1):E1228-E1242.
  • [38]Kasumov T, Cendrowski AV, David F, Jobbins KA, Anderson VE, Brunengraber H: Mass isotopomer study of anaplerosis from propionate in the perfused rat heart. Arch Biochem Biophys 2007, 463(1):110-117.
  • [39]Sorokina N, O’Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF, Ballal K, Taegtmeyer H, Buttrick PM, Lewandowski ED: Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 2007, 115(15):2033-2041.
  • [40]Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ: Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 1995, 15(1):12-25.
  • [41]Weiss RG, Kalil-Filho R, Herskowitz A, Chacko VP, Litt M, Stern MD, Gerstenblith G: Tricarboxylic acid cycle activity in postischemic rat hearts. Circulation 1993, 87(1):270-282.
  • [42]Perumal TM, Gunawan R: Understanding dynamics using sensitivity analysis: caveat and solution. BMC Syst Biol 2011, 5:41. BioMed Central Full Text
  文献评价指标  
  下载次数:61次 浏览次数:3次