期刊论文详细信息
BMC Genomics
Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis
Alexander A Myburg3  Shawn D Mansfield5  Carl J Douglas4  Fourie Joubert2  Anna R Kersting1  Charles A Hefer2  Eshchar Mizrachi3  Desre Pinard3 
[1] Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, Hufferstr. 1, Munster D48149, Germany;Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria 0028, South Africa;Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria 0028, South Africa;Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, BC, Canada;Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver V6T 1Z4, BC, Canada
关键词: Populus trichocarpa;    Wood formation;    Protein domains;    Eucalyptus grandis;    Transcriptomics;    Comparative genomics;    Carbohydrate active enzymes;   
Others  :  1203905
DOI  :  10.1186/s12864-015-1571-8
 received in 2014-10-17, accepted in 2015-04-23,  发布年份 2015
PDF
【 摘 要 】

Background

Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink.

Results

Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production.

Conclusions

CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.

【 授权许可】

   
2015 Pinard et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523023118103.pdf 1032KB PDF download
Figure 4. 54KB Image download
Figure 3. 45KB Image download
Figure 2. 51KB Image download
Figure 1. 126KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Coutinho PM, Stam M, Blanc E, Henrissat B. Why are there so many carbohydrate-active enzyme-related genes in plants ? Trends Plant Sci. 2003; 8:563-5.
  • [2]Wilson IBH. Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol. 2002; 12:569-77.
  • [3]Grattapaglia D, Plomion C, Kirst M, Sederoff RR. Genomics of growth traits in forest trees. Curr Opin Plant Biol. 2009; 12:148-56.
  • [4]Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M et al.. Short-rotation woody crops for bioenergy and biofuels applications. Vitr Cell Dev Biol - Plant. 2009; 45:619-29.
  • [5]Plomion C, Stokes A, Leprovost G. Wood formation in trees. Plant Physiol. 2001; 127(December):1513-23.
  • [6]Cosgrove DJ. Growth of the plant cell wall. Nature. 2005; 6:850-61.
  • [7]Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Exploring genomes for glycosyltransferases. Mol Biosyst. 2010; 6:1773-81.
  • [8]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009; 37(Database issue):233-8.
  • [9]Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000; 124(December):1515-9.
  • [10]Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Carbohydrates and glycoconjugates. 1997; 7:637-44.
  • [11]Henrissat B, Coutinho PM, Davies GJ. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol. 2001; 47:55-72.
  • [12]Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 1986; 204:223-7.
  • [13]The Carbohydrate-Active enZYmes Database. www.cazy.org. Accessed 3 June 2014
  • [14]Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008; 77:521-55.
  • [15]Dhugga KS. Building the wall: genes and enzyme complexes for polysaccharide synthases. Curr Opin Plant Biol. 2001; 4:488-93.
  • [16]Djerbi S, Aspeborg H, Schrader J, Coutinho PM, Stam M, Nilsson P et al.. Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid Aspen. Plant Physiol. 2005; 137(March):983-97.
  • [17]Lee C, Teng Q, Huang W, Zhong R, Ye Z. The Poplar GT8E and GT8F glycosyltransferases are functional orthologs of Arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant Cell Physiol. 2009; 50:1982-7.
  • [18]Li Q, Min D, Wang JP-Y, Peszlen I, Horvath L, Horvath B et al.. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol. 2011; 31:226-36.
  • [19]Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB. Correlations of expression of cell wall biosynthesis genes with variation in biomass composition in shrub willow (Salix spp.) biomass crops. Tree Genet Genomes. 2011; 10:1-9.
  • [20]Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A. 2012; 109:17117-22.
  • [21]Dhugga KS. Biosynthesis of non-cellulosic polysaccharides of plant cell walls. Phytochemistry. 2012; 74:8-19.
  • [22]Minic Z. Physiological roles of plant glycoside hydrolases. Planta. 2008; 227:723-40.
  • [23]Linhardt RJ, Galliher PM, Cooney CL. Polysaccharide lyases. Appl Biochem Biotechnol. 1986; 12:135-76.
  • [24]Garron M-L, Cygler M. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology. 2010; 20:1547-73.
  • [25]Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012; 7:e28742.
  • [26]Tsai AY-L, Canam T, Gorzsás A, Mellerowicz EJ, Campbell MM, Master ER. Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. Plant Biotechnol J. 2012; 10:1077-87.
  • [27]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemistry. 2004; 382:769-81.
  • [28]Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A. 2010; 107:15293-8.
  • [29]Levy I, Shoseyov O. Cellulose-binding domains: Biotechnological applications. Biotechnol Adv. 2002; 20:191-213.
  • [30]Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J et al.. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol. 2006; 140(March):946-62.
  • [31]Nasir A, Naeem A, Jawad Khan M, Lopez-NicoraArshan HD, Caetano-Anollés G. Annotation of protein domains reveals remarkable conservation in the functional make up of proteomes across Superkingdoms. Gene. 2011; 2:869-911.
  • [32]Kersting AR, Bornberg-Bauer E, Moore AD, Grath S. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Evol Biol. 2012; 4:316-29.
  • [33]Yin Y, Mao X, Yang J, Chen X, Mao F. Xu Y: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012; 479:1-7.
  • [34]dbCAN: DataBase for automated Carbohydrate-active enzyme ANnotation . http://csbl.bmb.uga.edu/dbCAN/. Accessed 30 March 2014.
  • [35]Phytozome .http://phytozome.jgi.doe.gov. Accessed 5 February 2015
  • [36]Groover AT. What genes make a tree a tree? Trends Plant Sci. 2005; 10:210-4.
  • [37]Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J et al.. The genome of Eucalyptus grandis. Nature. 2014; 510:356-62.
  • [38]Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol. 2009; 60:433-53.
  • [39]Proost S, Pattyn P, Gerats T, Van de Peer Y. Journey through the past: 150 million years of plant genome evolution. Plant J. 2011; 66:58-65.
  • [40]Vanneste K, Baele G, Maere S, Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 2014; 113:1-37.
  • [41]Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M et al.. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A. 2005; 102:5454-9.
  • [42]Mewalal R, Mizrachi E, Mansfield SD, Myburg AA. Cell wall-related proteins of unknown function: Missing links in plant cell wall development. Plant Cell Physiol. 2014; 50:1-13.
  • [43]Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG et al.. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013; 497:579-84.
  • [44]ConGenIE .http://congenie.org/. Accessed 12 May 2014.
  • [45]Tordai H, Nagy A, Farkas K, Bányai L, Patthy L. Modules, multidomain proteins and organismic complexity. FEBS J. 2005; 272:5064-78.
  • [46]Martinez-Fleites C, He Y, Davies GJ. Structural analyses of enzymes involved in the O-GlcNAc modification. Biochim Biophys Acta. 1800; 2010:122-33.
  • [47]Breton C, Fournel-Gigleux S, Palcic MM. Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol. 2012; 22:540-9.
  • [48]Hefer C, Mizrachi E, Joubert F, Myburg A. The Eucalyptus genome integrative explorer (EucGenIE): a resource for Eucalyptus genomics and transcriptomics. BMC Proc. 2011; 5 Suppl 7:1. BioMed Central Full Text
  • [49]Sánchez-Rodríguez C, Bauer S, Hématy K, Saxe F, Ibáñez AB, Vodermaier V et al.. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell. 2012; 24:589-607.
  • [50]Pawar PM-A, Koutaniemi S, Tenkanen M, Mellerowicz EJ. Acetylation of woody lignocellulose: significance and regulation. Front Plant Sci. 2013; 4(May):118-26.
  • [51]Schallus T, Jaeckh C, Fehér K, Palma AS, Liu Y, Simpson JC et al.. Malectin: A novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell. 2008; 19(August):3404-14.
  • [52]Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2009; 106:7648-53.
  • [53]Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T, Balzergue S et al.. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol. 2007; 17:922-31.
  • [54]Veitia RA, Bottani S, Birchler JA. Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet. 2008; 24:390-7.
  • [55]De Smet R, Van de Peer Y. Redundancy and rewiring of genetic networks following genome-wide duplication events. Curr Opin Plant Biol. 2012; 15:168-76.
  • [56]Lee C, Zhong R, Ye Z-H. Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol. 2012; 53:135-43.
  • [57]Doering A, Lathe R, Persson S. An update on xylan synthesis. Mol Plant. 2012; 5:769-71.
  • [58]Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol. 2010; 153:1729-46.
  • [59]Rennie EA, Hansen SF, Baidoo EEK, Hadi MZ, Keasling JD, Scheller HV. Three members of the Arabidopsis glycosyltransferase family Are xylan glucuronosyltransferases. Plant Physiol. 2012; 159(August):1408-17.
  • [60]Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, Held M, Showalter AM. Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem 2013;288:1–25.
  • [61]Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS et al.. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol. 2012; 159:12-26.
  • [62]Lutz M. Learning Python. 3rd Editio. Sebastopol, CA, USA: O’Reilly Meidia, Inc.; 2008:3–9.
  • [63]EucGenIE .http://www.eucgenie.org/. Accessed 20 September 2013.
  • [64]Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD: Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. New Phytol 2015, doi: 10.11.
  • [65]Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotech. 2009; 27:455-7.
  • [66]Cufflinks. http://cufflinks.cbcb.umd.edu/. Accessed 17 March 2013.
  • [67]Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I et al.. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science (80- ). 2010; 329:223-6.
  • [68]Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB et al.. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (80- ). 2007; 318:245-50.
  • [69]Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H et al.. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. 2008; 319:64-9.
  • [70]Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, DePamphilis C et al.. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science (80- ). 2011; 332:960-3.
  • [71]Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010; 463:763-8.
  • [72]Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al.. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science (80- ). 2002; 296:92-100.
  • [73]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al.. The B73 maize genome: complexity, diversity, and dynamics. Science (80- ). 2009; 326:1112-5.
  • [74]Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al.. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457:551-6.
  • [75]Aquilegia coerulea Genome Sequencing Project. http://phytozome.jgi.doe.gov. Accessed 14 June 2012.
  • [76]Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR et al.. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci. 2013; 110(48):19478-82.
  • [77]Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A et al.. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007; 449:463-7.
  • [78]Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F et al.. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotech. 2014; 32:656-62.
  • [79]Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al.. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008; 452:991-6.
  • [80]Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 408:796-815.
  • [81]Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al.. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013; 45:487-94.
  • [82]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W et al.. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009; 41:1275-81.
  • [83]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al.. Genome sequence of the palaeopolyploid soybean. Nature. 2010; 463:178-83.
  • [84]Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al.. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science (80- ). 2006; 313:1596-15604.
  • [85]Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al.. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol. 2010; 28:951-6.
  • [86]Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M et al.. The Cassava genome: Current progress, future directions. Trop Plant Biol. 2012; 5:88-94.
  文献评价指标  
  下载次数:13次 浏览次数:7次