期刊论文详细信息
BMC Medical Genetics
Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs
Roberta D’Arrigo4  Leopoldo Paolo Pucillo4  Carlo Federico Perno2  Andrea Antinori1  Massimo Tempestilli4  Caterina Gori3  Mauro Zaccarelli1  Giulia Berno3 
[1] Clinical Department, National Institute for Infectious Diseases “L. Spallanzani”, Rome, Italy;Unit of Molecular Virology, Tor Vergata University Hospital, Rome, Italy;Antiviral Drug Monitoring Unit, National Institute for Infectious Diseases “L. Spallanzani”, Rome, Italy;Clinical Biochemistry and Pharmacology Laboratory, National Institute for Infectious Diseases “L. Spallanzani”, Via Portuense 292, Rome, 00149, Italy
关键词: Cytocrome P450;    Pharmacogenetics;    Variability;    Polymorphisms;   
Others  :  848351
DOI  :  10.1186/1471-2350-15-76
 received in 2014-03-24, accepted in 2014-06-25,  发布年份 2014
PDF
【 摘 要 】

Background

Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production.

In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy.

Methods

The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used.

Results

Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B.

Conclusions

Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs requiring metabolism via the cytochrome P450 system.

【 授权许可】

   
2014 Berno et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140718070417346.pdf 492KB PDF download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Wojnowski L, Kamdem LK: Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006, 2(2):171-182.
  • [2]Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, Goldstein JA: Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001, 299(3):825-831.
  • [3]Tozzi V: Pharmacogenetics of antiretrovirals. Antiviral Res 2010, 85(1):190-200.
  • [4]Lakhman SS, Ma Q, Morse GD: Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 2009, 10(8):1323-1339.
  • [5]García-Martín E, Martínez C, Pizarro RM, García-Gamito FJ, Gullsten H, Raunio H, Agúndez JA: CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002, 71(3):196-204.
  • [6]Ingelman-Sundberg M: Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2003, 369(1):89-104.
  • [7]Josephson F, Allqvist A, Janabi M, Sayi J, Aklillu E, Jande M, Mahindi M, Burhenne J, Bottiger Y, Gustafsson LL, Haefeli WE, Bertilsson L: CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin Pharmacol Ther 2007, 81(5):708-712.
  • [8]Fröhlich M, Hoffmann MM, Burhenne J, Mikus G, Weiss J, Haefeli WE: Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br J Clin Pharmacol 2004, 58(4):443-444.
  • [9]Mouly SJ, Matheny C, Paine MF, Smith G, Lamba J, Lamba V, Pusek SN, Schuetz EG, Stewart PW, Watkins PB: Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther 2005, 78(6):605-618.
  • [10]Ernest CS 2nd, Hall SD, Jones DR: Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 2005, 312(2):583-591.
  • [11]Solas C, Simon N, Drogoul MP, Quaranta S, Frixon-Marin V, Bourgarel-Rey V, Brunet C, Gastaut JA, Durand A, Lacarelle B, Poizot-Martin I: Minimal effect of MDR1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of indinavir in HIV-infected patients. Br J Clin Pharmacol 2007, 64(3):353-362.
  • [12]Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012, 13:134.
  • [13]Lamba JK, Lin YS, Schuetz EG, Thummel KE: Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002, 54(10):1271-1294.
  • [14]Lee SJ, Goldstein JA: Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics 2005, 6(4):357-371.
  • [15]Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR: Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003, 42(4):299-305.
  • [16]Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001, 27(4):383-391.
  • [17]Rakhmanina NY, Neely MN, Van Schaik RH, Gordish-Dressman HA, Williams KD, Soldin SJ, van den Anker JN: CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther Drug Monit 2011, 33(4):417-424.
  • [18]Sprinz E, Bay MB, Lazzaretti RK, Jeffman MW, Mattevi VS: Lopinavir/ritonavir monotherapy as maintenance treatment in HIV-infected individuals with virological suppression: results from a pilot study in Brazil. HIV Med 2008, 9(5):270-276.
  • [19]van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J: CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002, 48(10):1668-1671.
  • [20]Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, Weimar W, van Gelder T: Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003, 74(3):245-254.
  • [21]Pirmohamed M, Back DJ: The pharmacogenomics of HIV therapy. Pharmacogenomics J 2001, 1(4):243-253.
  • [22]Lynch T, Price A: The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007, 76(3):391-396.
  • [23]Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC, Malaise J, Lison D, Mourad M: CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006, 6(11):2706-2713.
  • [24]Tavira B, Coto E, Díaz-Corte C, Ortega F, Arias M, Torres A, Díaz JM, Selgas R, López-Larrea C, Campistol JM, Alvarez V, REDINREN Pharmacogenetics group: Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin Chem Lab Med 2011, 49(5):825-833.
  • [25]Hooper DK, Fukuda T, Gardiner R, Logan B, Roy-Chaudhury A, Kirby CL, Vinks AA, Goebel J: Risk of tacrolimus toxicity in CYP3A5 nonexpressors treated with intravenous nicardipine after kidney transplantation. Transplantation 2012, 93(8):806-812.
  文献评价指标  
  下载次数:15次 浏览次数:8次