期刊论文详细信息
BMC Research Notes
SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase
Eric Chabriere2  Mikael Elias1  Charlotte Champion2  Guillaume Gotthard2  Julien Hiblot2  Janek Bzdrenga2 
[1] Weizmann Institute of Science, Biological Chemistry, Rehovot, Israel;URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
关键词: Thermoacidophile;    Extremophile;    Phosphotriesterase;    Quorum sensing;    PLL;    Lactonase;   
Others  :  1132590
DOI  :  10.1186/1756-0500-7-333
 received in 2014-02-04, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

SacPox, an enzyme from the extremophilic crenarchaeal Sulfolobus acidocaldarius (Sac), was isolated by virtue of its phosphotriesterase (or paraoxonase; Pox) activity, i.e. its ability to hydrolyze the neurotoxic organophosphorus insecticides. Later on, SacPox was shown to belong to the Phosphotriesterase-Like Lactonase family that comprises natural lactonases, possibly involved in quorum sensing, and endowed with promiscuous, phosphotriesterase activity.

Results

Here, we present a comprehensive and broad enzymatic characterization of the natural lactonase and promiscuous organophosphorus hydrolase activities of SacPox, as well as a structural analysis using a model.

Conclusion

Kinetic experiments show that SacPox is a proficient lactonase, including at room temperature. Moreover, we discuss the observed differences in substrate specificity between SacPox and its closest homologues SsoPox and SisLac together with the possible structural causes for these observations.

【 授权许可】

   
2014 Bzdrenga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150304015805190.pdf 1941KB PDF download
Figure 3. 150KB Image download
Figure 2. 155KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Afriat L, Roodveldt C, Manco G, Tawfik DS: The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 2006, 45:13677-13686.
  • [2]Afriat-Jurnou L, Jackson CJ, Tawfik DS: Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 2012, 51:6047-6055.
  • [3]Merone L, Mandrich L, Rossi M, Manco G: A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 2005, 9:297-305.
  • [4]Porzio E, Merone L, Mandrich L, Rossi M, Manco G: A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 2007, 89:625-636.
  • [5]Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM: Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Biochemistry 2009, 48:2237-2247.
  • [6]Hawwa R, Larsen SD, Ratia K, Mesecar AD: Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. J Mol Biol 2009, 393:36-57.
  • [7]Dumas DP, Caldwell SR, Wild JR, Raushel FM: Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 1989, 264:19659-19665.
  • [8]Singh BK: Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 2009, 7:156-164.
  • [9]Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E: Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 2008, 379:1017-1028.
  • [10]Benning MM, Kuo JM, Raushel FM, Holden HM: Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 1994, 33:15001-15007.
  • [11]Seibert CM, Raushel FM: Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 2005, 44:6383-6391.
  • [12]Roodveldt C, Tawfik DS: Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 2005, 44:12728-12736.
  • [13]Porzio E, Di Gennaro S, Palma A, Manco G: Mn(2+) modulates the kinetic properties of an archaeal member of the PLL family. Chem Biol Interact 2013, 203:251-256.
  • [14]Xue B, Chow JY, Baldansuren A, Yap LL, Gan YH, Dikanov SA, Robinson RC, Yew WS: Correction to structural evidence of a productive active site architecture for an evolved quorum-quenching GKL lactonase. Biochemistry 2012, 51:10120.
  • [15]Bigley AN, Raushel FM: Catalytic mechanisms for phosphotriesterases. Biochim Biophys Acta 2013, 1834:443-453.
  • [16]Hiblot J, Gotthard G, Elias M, Chabriere E: Differential active site loop conformations mediate promiscuous activities in the lactonase pox. PLoS One 2013, 8:e75272.
  • [17]Waters CM, Bassler BL: Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005, 21:319-346.
  • [18]Popat R, Crusz SA, Diggle SP: The social behaviours of bacterial pathogens. Br Med Bull 2008, 87:63-75.
  • [19]Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F: Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 2009, 135:187-195.
  • [20]Elias M, Tawfik DS: Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J Biol Chem 2012, 287:11-20.
  • [21]Amara N, Krom BP, Kaufmann GF, Meijler MM: Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 2011, 111:195-208.
  • [22]Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M: Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003, 22:3803-3815.
  • [23]O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL: A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 2013, 110:17981-17986.
  • [24]Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N: Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 2004, 53:1054-1061.
  • [25]Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Hoiby N, Bjarnsholt T, Givskov M: Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 2012, 67:1198-1206.
  • [26]Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH: Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 2001, 411:813-817.
  • [27]Dong YH, Wang LY, Zhang LH: Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 2007, 362:1201-1211.
  • [28]Ng FS, Wright DM, Seah SY: Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for quorum quenching. Appl Environ Microbiol 2011, 77:1181-1186.
  • [29]Krieger RI: Handbook of Pesticide Toxicology. 2nd edition. San Diego: Academic Press; 2001.
  • [30]Gupta RC: Handbook of Toxicology of Chemical Warfare Agents. San Diego: Elsevier Inc; 2009.
  • [31]LeJeune KE, Wild JR, Russell AJ: Nerve agents degraded by enzymatic foams. Nature 1998, 395:27-28.
  • [32]Hawwa R, Aikens J, Turner RJ, Santarsiero BD, Mesecar AD: Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Arch Biochem Biophys 2009, 488:109-120.
  • [33]Hiblot J, Gotthard G, Chabriere E, Elias M: Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS One 2012, 7:e47028.
  • [34]Hiblot J, Gotthard G, Champion C, Chabriere E, Elias M: Crystallization and preliminary X-ray diffraction analysis of the lactonase VmoLac from Vulcanisaeta moutnovskia. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013, 69:1235-1238.
  • [35]Vieille C, Zeikus GJ: Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001, 65:1-43.
  • [36]Demirjian DC, Moris-Varas F, Cassidy CS: Enzymes from extremophiles. Curr Opin Chem Biol 2001, 5:144-151.
  • [37]Burton SG, Cowan DA, Woodley JM: The search for the ideal biocatalyst. Nat Biotechnol 2002, 20:37-45.
  • [38]Singh RK, Tiwari MK, Singh R, Lee JK: From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 2013, 14:1232-1277.
  • [39]Merone L, Mandrich L, Porzio E, Rossi M, Muller S, Reiter G, Worek F, Manco G: Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Bioresour Technol 2010, 101:9204-9212.
  • [40]Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Hocker B, Sterner R, Raushel FM: Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 2013, 135:11670-11677.
  • [41]Zhang Y, An J, Ye W, Yang G, Qian ZG, Chen HF, Cui L, Feng Y: Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Appl Environ Microbiol 2012, 78:6647-6655.
  • [42]Chow JY, Wu L, Yew WS: Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 2009, 48:4344-4353.
  • [43]Chow JY, Xue B, Lee KH, Tung A, Wu L, Robinson RC, Yew WS: Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem 2010, 285:40911-40920.
  • [44]Auernik KS, Cooper CR, Kelly RM: Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr Opin Biotechnol 2008, 19:445-453.
  • [45]Gotthard G, Hiblot J, Elias M, Chabriere E: Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus islandicus lactonase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011, 67:354-357.
  • [46]Del Vecchio P, Elias M, Merone L, Graziano G, Dupuy J, Mandrich L, Carullo P, Fournier B, Rochu D, Rossi M, Masson P, Chabriere E, Manco G: Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 2009, 13:461-470.
  • [47]Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217.
  • [48]Poirot O, O’Toole E, Notredame C: Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res 2003, 31:3503-3506.
  • [49]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [50]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999, 41:95-98.
  • [51]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [52]Hiblot J, Gotthard G, Chabriere E, Elias M: Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep 2012, 2:779.
  • [53]Gotthard G, Hiblot J, Gonzalez D, Chabriere E, Elias M: Crystallization and preliminary X-ray diffraction analysis of the organophosphorus hydrolase OPHC2 from Pseudomonas pseudoalcaligenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013, 69:73-76.
  • [54]Gotthard G, Hiblot J, Gonzalez D, Elias M, Chabriere E: Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS One 2013, 8:e77995.
  • [55]Studier FW: Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 2005, 41:207-234.
  • [56]van den Berg S, Lofdahl PA, Hard T, Berglund H: Improved solubility of TEV protease by directed evolution. J Biotechnol 2006, 121:291-298.
  • [57]Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF: Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999, 112:531-552.
  • [58]Copeland RA: Enzymes, A Practical Introduction to Structure, Mechanism, and Data Analysis. 2nd edition. New York, Chichester, Weiheim, Brisbane, Singapore, Toronto: WILEY-VCH; 2000.
  • [59]Lambert C, Leonard N, De Bolle X, Depiereux E: ESyPred3D: prediction of proteins 3D structures. Bioinformatics 2002, 18:1250-1256.
  • [60]DeLano W: The PyMOL Molecular Graphics System. San Carlos, CA, USA: DeLano Scientific; 2002.
  文献评价指标  
  下载次数:19次 浏览次数:14次