期刊论文详细信息
BMC Evolutionary Biology
Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses
Annette Klussmann-Kolb2  Eugenia Zarza2  Jan Schnitzler2  Rajko Slapnik1  Adrienne Jochum3  Alexander M Weigand3 
[1] Institute of Biology, Center for Scientific Research of the Slovenian Academy of Sciences and Arts, Novi trg 2, p.p. 306, 1000, Ljubljana, Slovenia;Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany;Department of Phylogeny and Systematics, Institute for Ecology, Evolution and Diversity, Biosciences, Goethe-University Frankfurt, Max-von-Laue Straße 13, 60438, Frankfurt am Main, Germany
关键词: Gastropoda;    Phylogeny;    Zospeum;    Carychium;    Allopatric diversification;    DNA barcoding;    Cryptic diversity;    Subterranean environment;    Protracted speciation;    Integrative taxonomy;   
Others  :  1130249
DOI  :  10.1186/1471-2148-13-18
 received in 2012-09-20, accepted in 2013-01-14,  发布年份 2013
PDF
【 摘 要 】

Background

Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae.

Results

Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap.

Conclusions

Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation.

【 授权许可】

   
2013 Weigand et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226190031170.pdf 2595KB PDF download
Figure 6. 38KB Image download
Figure 5. 108KB Image download
Figure 4. 71KB Image download
Figure 3. 96KB Image download
Figure 2. 133KB Image download
Figure 1. 175KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Albertson RC, Markert JA, Danley PD, Kocher TD: Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci USA 1999, 96:5107-5110.
  • [2]Robe LJ, Loreto ELS, Valente VLS: Radiation of the, Drosophila“ subgenus (Drosophilidae, Diptera) in the Neotropics. J Zool Syst Evol Res 2010, 48:310-321.
  • [3]Smith BT, Klicka J: The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 2010, 33:333-342.
  • [4]Avise JC: Phylogeography: The history of formation of species. Cambridge: Harvard University Press; 2000.
  • [5]Zeisset I, Beebee TJC: Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 2008, 101:109-119.
  • [6]Morton JE: The evolution of the Ellobiidae with a discussion on the origin of the Pulmonata. P Zool Soc Lond 1955, 125:127-168.
  • [7]De Frias Martins AM: Morphological and anatomical diversity within the Ellobiidae (Gastropoda, Pulmonata, Archaeopulmonata). Vita Malacologica 2007, 4:1-28.
  • [8]Barker GM: The Biology of Terrestrial Molluscs. UK: CABI Publishing, Oxon; 2001.
  • [9]De Frias Martins AM: Relationships within the Ellobiidae. In Origin and evolutionary radiation of the Mollusca. Edited by Taylor J. Oxford: Oxford University Press, Oxford; 1996:285-294.
  • [10]De Frias Martins AM: Anatomy and systematics of the western Atlantic Ellobiidae (Gastropoda: Pulmonata). Vita Malacologia 1996, 37:163-332.
  • [11]Odhner NH: Marinula juanensis n. sp., nebst Bermerkungen über die Systematik der Ellobiiden. Ark Zool 1925, 17A:1-15.
  • [12]White TR, Conrad MM, Tseng R, Balayan S, Golding R, de Frias Martins AM, Dayrat BA: Ten new complete mitochondrial genomes of pulmonates (Mollusca: Gastropoda) and their impact on phylogenetic relationships. BMC Evol Biol 2011, 11:295. BioMed Central Full Text
  • [13]Dayrat B, Conrad M, Balayan S, White TR, Albrecht C, Golding R, Gomes S, Harasewych MG, de Frias Martins AM: Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Mol Phylogenet Evol 2011, 59:425-437.
  • [14]Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C: From sea to land and beyond: new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol Biol 2008, 8:57. BioMed Central Full Text
  • [15]Bulman K: Shell variability in Carychium tridentatum (Risso, 1826) and its importance for infraspecific taxonomy (Gastropoda, Pulmonata: Ellobiidae). Malak Abh Mus Tierkd Dresden 1990, 15:37-50.
  • [16]Nekola JC, Barthel M: Morphometric analysis of the genus Carychium in the Great Lakes region. J Conchol 2002, 37:515-531.
  • [17]Jochum A: Evolution and diversity of the troglobitic Carychiidae - A morphological and phylogenetic investigation of the terrestrial ellobioid genera, Carychium and Zospeum. Malacologist 2011, 57:16-18.
  • [18]Weigand AM, Jochum A, Pfenninger M, Steinke D, Klussmann-Kolb A: A new approach to an old conundrum - DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Mol Ecol Resour 2011, 11:255-265.
  • [19]Weigand AM, Goetze M-C, Jochum A: Outdated but established?! Conchologically driven species delineations in microgastropods (Carychiidae, Carychium). Org Divers Evol 2012, 12:377-386.
  • [20]Nekola JC, Barker GM, Cameron RAD, Pokryszko BM: Latitudinal and longitudinal variation of body size in land snail populations and communities. In Global patterns of body size. Edited by Smith F, Lyons K. Chicago: University of Chicago Press; In press
  • [21]Aubry S, Labaune C, Magnin F, Roche P, Kiss L: Active and passive dispersal of an invading land snail in Mediterranean France. J Anim Ecol 2006, 75:802-813.
  • [22]Slapnik R: Activity and movements of Zospeum isselianum Pollonera 1886 (Gastropoda, Pulmonata, Carychiidae) in a cave in the Kamniške-Savinjske Alps (Slovenia). Nat Croat 2001, 10:153-162.
  • [23]Weigand AM, Pfenninger M, Jochum A, Klussmann-Kolb A: Alpine crossroads or origin of genetic diversity? Comparative phylogeography of two sympatric microgastropod species. PLoS One 2012, 7(5):e37089.
  • [24]Vagvolgyi J: Body size, aerial dispersal, and origin of the Pacific Land Snail Fauna. Syst Biol 1975, 24:465-488.
  • [25]Gittenberger E, Groenenberg DSJ, Kokshoorn B, Preece RC: Molecular trails from hitch-hiking snails. Nature 2006, 439:409.
  • [26]Pearce TA, Payne SL: First record of the European land snail Carychium minimum in Pennsylvania, USA. Tentacle 2011, 19:13-14.
  • [27]Weigand AM, Jochum A: Mollusca, Gastropoda, Ellobioidea, Carychium minimum O.F. Müller, 1774: filling gaps. New population record for the State of New York, northeastern United States. Check List 2010, 6:517-518.
  • [28]Puillandre N, Modica MV, Zhang Y, Sirovich L, Boisselier MC, Cruaud C, Holford M, Samadi S: Large-scale species delimitation methods for hyperdiverse groups. Mol Ecol 2012, 21:2671-2691.
  • [29]Haszprunar G: Species delimitations – not ‘only descriptive’. Org Divers Evol 2011, 11:249-252.
  • [30]Heath TA, Hedtke SM, Hillis DM: Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 2008, 46:239-257.
  • [31]Gittenberger E: Three notes on Iberian terrestrial gastropods. Zool Meded 1980, 55:201-213.
  • [32]Von Martens E: Land and Freshwater Mollusca. In Biologia Centrali-Americana. Edited by Godman FD, Salvin O. London; 1890:1901-353.
  • [33]De Queiroz K: Species concepts and species delimitation. Syst Biol 2007, 56:879-886.
  • [34]Trussell GC: Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution 1996, 50:448-454.
  • [35]Hollander J, Collyer ML, Adams DC, Johannesson K: Phenotypic plasticity in two marine snails: constraints superseding life history. J Evol Biol 2006, 19:1861-1872.
  • [36]Hollander J, Butlin RK: The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod. BMC Evol Biol 2010, 10:333. BioMed Central Full Text
  • [37]Wake DB, Roth G, Wake MH: On the problem of stasis in organis-mal evolution. J Theor Biol 1983, 101:211-224.
  • [38]West-Eberhard MJ: Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 1989, 20:249-278.
  • [39]Lefébure T, Douady CJ, Gouy M, Trontelj P, Briolay J, Gibert J: Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 2006, 15:1797-1806.
  • [40]Culver DC, Pipan T: Biology of Caves and Other Subterranean Habitats. Oxford: U.K., Oxford University Press; 2009.
  • [41]Wright S: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Genetics: Proceedings of the Sixth International Congress on; 1932:355-366.
  • [42]Pilsbry HA: Land Mollusca of North America (north of Mexico), 2(2). Philadelphia: Academy of Natural Sciences of Philadelphia, Monographs 3; 1948.
  • [43]Pilsbry HA: Forms of American Carychium. Nautilus 1891, 4:109-110.
  • [44]Pilsbry HA: The American species of Carychium. Nautilus 1894, 8:61-63.
  • [45]Clapp GH: Notes on Carychium and description of a New variety. Nautilus 1906, 14:138-140.
  • [46]Burch JB, Van Devender AS: Identification of eastern North American land snails. The Prosobranchia, Opisthobranchia and Pulmonata (Actophila). Walkerana 1980, 1:60-80.
  • [47]Ozimec R, Bedek J, Gottstein S, Jalžić B, Slapnik R, Štamol V, Bilandžija H, Dražina T, Kletečki E, Komerički A, Lukić M, Pavlek M: Red book of Croatian cave dwelling fauna. Zagreb: Ministarstvo kulture, Državni Zavod za zaštitu prirode; 2009.
  • [48]Phillimore AB, Price TD: Density-dependent cladogenesis in birds. PLoS Biol 2008, 6:483-489.
  • [49]Nee S, May RM, Harvey PH: The reconstructed evolutionary process. Philos Trans R Soc Lond B 1994, 344:305-311.
  • [50]Etienne RS, Rosindell J: Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst Biol 2012, 61:204-213.
  • [51]Slatkin M: Isolation by distance in equilibrium and nonequilibrium populations. Evolution 1993, 47:264-279.
  • [52]Pipan T, López H, Oromí P, Polak S, Culver DC: Temperature variation and the presence of troglobionts in terrestrial shallow subterranean habitats. J Nat Hist 2011, 45:253-273.
  • [53]McGinnies WG, Goldman BJ, Paylore P: Deserts of the World. Tucson: Univ. Arizona Press; 1968.
  • [54]Edney EB, Franco P, Wool R: The responses of Arenivaga investigate (Dictyoptera) to gradients of temperature and humidity in sand studied by tagging with Technetium 99m. Physiol Zool 1978, 51:241-255.
  • [55]Prozorova LA, Lee JS, Zasypkina MO, Korean Hypogean Malacofauna: First record in Asia of Troglobitic Zospeum-like snails (Pulmonata, Ellobioidea, Carychiidae). Korean J Soil Zool 2011, 15:1-4.
  • [56]Barr TC Jr, Holsinger JR: Speciation in Cave Faunas. Annu Rev Ecol Syst 1985, 16:313-337.
  • [57]Allegrucci G, Todisco V, Sbordoni V: Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. Mol Phylogenet Evol 2005, 37:153-164.
  • [58]Davis GM: Evolution of prosobranch snails transmitting asian Schistosoma; coevolution with Schistosoma: a review. Prog Clin Parasitol 1993, 3:145-204.
  • [59]Gittenberger E: What about non-adaptive radiation? Biol J Linn Soc 1991, 43:263-272.
  • [60]Aljančič G, Năpăruş M: Stygobionts washed out to surface: A case of Proteus anguinus. In Proceedings of 21st International Conference on Subterranean Biology: 2–7 September 2012. Edited by Pavol J. Slovakia: Kosice: Safarik University; 2012.
  • [61]Juan C, Guzik MT, Jaume D, Cooper SJB: Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol Ecol 2010, 19:3865-3880.
  • [62]Rona PA, Richardson ES: Early Cenozoic global plate reorganization. Earth Planet Sci Lett 1978, 40:1-11.
  • [63]Hsü KJ: Time and place in Alpine orogenesis - the Fermor lecture. Geological Society, London, Special Publications 1989, 45:421-443.
  • [64]Sandberger F: Die Land- und Süsswasser-Conchylien der Vorwel. Wiesbaden: C.W. Kreidel; 1870:1870-1875.
  • [65]Villatte J: Nouvelles donnéessur les mollusques continentaux du Thanétien inférieur sous-pyrénéen. Interprétation stratigraphique et paléoécologique. Geobios-Lyon 1979, 12:513-533.
  • [66]Stworzewicz E: Miocene land snails from Belchatów (Central Poland), III: Carychiinae (Gastropoda; Pulmonata: Ellobiidae). Palaeont Z 1999, 73:261-276.
  • [67]Bole J: Rod Zospeum Bourguignat 1856 (Gastropoda, Ellobiidae) Jugoslaviji. Die Gattung Zospeum Bourguignat 1856 (Gastropoda, Ellobiidae) in Jugoslawien. Razprave Slov Akad Znan Umetn 1974, 17:249-282.
  • [68]Azuma M: Colored Illustrations of the Land Snails of Japan. Hoikusha, Osaka: Japan; 1982.
  • [69]Bank RA, Gittenberger E: Notes on Azorean and European Carychium species (Gastropoda Basommatophora: Ellobiidae). Basteria 1985, 49:85-100.
  • [70]Strauch E: Die Entwicklung der europäischen Vertreter der Gattung Carychium O.F. MÜLLER seit dem Miozän (Mollusca: Basommatophora). Arch Moll 1977, 107:149-193.
  • [71]Folmer O, Black M, Heah W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994, 3:294-299.
  • [72]Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann Entomol Soc Am 1994, 87:651-701.
  • [73]Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR: Histone H3 and U2 snRNAsequences and arthropod molecular evolution. Aust J Zool 1998, 46:419-437.
  • [74]Katoh K, Misasa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [75]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [76]Hebert PDN, Ratnasingham S, DeWaard JR: Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 2003, 270:S596-S599.
  • [77]Puillandre N, Lambert A, Brouillet S, Achaz G: ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 2011, 21:1864-1877.
  • [78]Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP: Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 2006, 55:595-609.
  • [79]Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP: Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 2009, 58:298-311.
  • [80]Hart MW, Sunday J: Things fall apart: biological species form unconnected parsimony networks. Biol Lett 2007, 3:509-512.
  • [81]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [82]Templeton AR, Crandall KA, Sing CF: A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132:619-633.
  • [83]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [84]Stamatakis A: RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [85]Nylander JAA: MrModeltest 2.3. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University; 2004.
  • [86]Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294:2310-2314.
  • [87]Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [88]Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV: Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012, 29:2157-2167.
  • [89]Raftery AE, Newton MA, Satagopan JM, Krivitsky PN: Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Memorial Sloan-Kettering Cancer Center, Dept. of Epidemiology & Biostatistics Working Paper Series 2007, 6:1-45.
  • [90]Turkheimer FE, Hinz R, Cunningham VJ: On the undecidability among kinetic models: from model selection to model averaging. J Cereb Blood Flow Metab 2003, 23:490-498.
  • [91]Lartillot N, Philippe H: Computing bayes factors using thermodynamic integration. Syst Biol 2006, 55:195-207.
  • [92]Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 2011, 60:150-160.
  • [93]Burnham KP, Anderson DR: Model Selection and Multi-Model Inference. New York: Springer-Verlag; 2002.
  • [94]Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773-795.
  • [95]De Loriol P, Jaccard A: Etude géologique et paléontologique de la formation d'eau douce infracrétacée du Jura et en particulier de Villers-le-Lac. Mém Soc Phys et Hist Nat Genève 1865, 18:63-128.
  • [96]Briart A, Cornet FL: Description des fossiles du calcaire grossier de Mons. Quatrième partie. Mem Acad r Sci Lett Belg 1889, 47:1-128.
  • [97]Rambaut A, Drummond AJ: Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer webcite
  • [98]Rabosky DL: Likelihood methods for detecting temporal shifts in diversification rates. Evolution 2006, 60:1152-1164.
  • [99]Rabosky DL: LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinform Online 2006, 2:257-260.
  • [100]Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57:4-14.
  • [101]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Modell 2006, 190:231-259.
  • [102]Hadly EA, Spaeth PA, Li C: Niche conservatism above the species level. Proc Natl Acad Sci USA 2009, 106:19707-19714.
  • [103]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climato 2005, 25:1965-1978.
  • [104]Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP: Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2007, 2:e563.
  • [105]Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 2007, 34:102-117.
  • [106]Fielding AH, Bell JF: A review of methods for the assessment of prediction errors in conservation presence: absence models. Environ Conserv 1997, 24:38-49.
  • [107]Warren DL, Glor RE, Turelli M: ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 2010, 33:607-611.
  • [108]Schoener TW: Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 1968, 49:704-726.
  • [109]Warren DL, Glor RE, Turelli M: Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62:2868-2883.
  • [110]Warren DL, Seifert SN: Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 2011, 21:335-342.
  • [111]Holm G: Exotic species of land snails from Mount Vernon, WA and Queen Elizabeth Park, Vancouver, B.C. Dredgings 2010, 50:3-4.
  • [112]Roth B: European land mollusks in the San Francisco Bay area, California: Carychium minimum Müller and the Arion hortensis complex. Veliger 1982, 24:342-344.
  • [113]Forsyth RG: Land Snails of British Columbia. Royal BC Museum Handbook. Victoria: Royal British Columbia Museum; 2004.
  • [114]Forsyth RG, Oldham MJ, Schueler FW: Mollusca, Gastropoda, Ellobiidae, Carychium minimum, and Ferussaciidae, Cecilioides acicula: Distribution extension and first provincial records of two introduced land snails in Ontario, Canada. Check List 2008, 4:449-452.
  • [115]Grimm FW, Forsyth RG, Schueler FW, Karstad A: Identifying Land Snails and Slugs in Canada: Introduced Species and Native Genera. Canadian Food Inspection Agency: Ottawa; 2009.
  • [116]Clapp WF: Carychium minimum Mull. Nautilus 1912, 26:24.
  文献评价指标  
  下载次数:75次 浏览次数:28次