BMC Genetics | |
Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (Manihot esculenta Crantz) | |
Mywish K. Maredia3  Byron Reyes1  Punna Ramu6  Melaku A. Gedil5  Gezahegn Girma5  Tahirou Abdoulaye5  Elizabeth Y. Parkes5  James Y. Asibuo4  Ansong A. Dankyi2  Joseph A. Manu-Aduening4  Peter A. Kulakow5  Ismail Y. Rabbi5  | |
[1] International Center for Tropical Agriculture (CIAT), Planes de Altamira, de Pizza Hut Villa Fontana, 1c Oeste, Edificio CAR III, Oficina 4-1, Managua, Nicaragua;Agriculture Innovation Consult, Kumasi, Ghana;Michigan State University, 446 W. Circle Drive, Room 89, East Lansing 48824, MI, USA;Council for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI), Kumasi, Ghana;International Institute of Tropical Agriculture (IITA), Ibadan, PMB 5320, Nigeria;Cornell University, Institute for Genomic Diversity, 175, Biotechnology Building, Ithaca 14853, NY, USA | |
关键词: Ancestry estimations; Genotyping-by-sequencing; Impact assessment; Variety identification; Cassava; | |
Others : 1228887 DOI : 10.1186/s12863-015-0273-1 |
|
received in 2015-05-19, accepted in 2015-09-15, 发布年份 2015 | |
【 摘 要 】
Background
Accurate identification of crop cultivars is crucial in assessing the impact of crop improvement research outputs. Two commonly used identification approaches, elicitation of variety names from farmer interviews and morphological plant descriptors, have inherent uncertainty levels. Genotyping-by-sequencing (GBS) was used in a case study as an alternative method to track released varieties in farmers’ fields, using cassava, a clonally propagated root crop widely grown in the tropics, and often disseminated through extension services and informal seed systems. A total of 917 accessions collected from 495 farming households across Ghana were genotyped at 56,489 SNP loci along with a “reference library” of 64 accessions of released varieties and popular landraces.
Results
Accurate cultivar identification and ancestry estimation was accomplished through two complementary clustering methods: (i) distance-based hierarchical clustering; and (ii) model-based maximum likelihood admixture analysis. Subsequently, 30 % of the identified accessions from farmers’ fields were matched to specific released varieties represented in the reference library. ADMIXTURE analysis revealed that the optimum number of major varieties was 11 and matched the hierarchical clustering results. The majority of the accessions (69 %) belonged purely to one of the 11 groups, while the remaining accessions showed two or more ancestries. Further analysis using subsets of SNP markers reproduced results obtained from the full-set of markers, suggesting that GBS can be done at higher DNA multiplexing, thereby reducing the costs of variety fingerprinting. A large proportion of discrepancy between genetically unique cultivars as identified by markers and variety names as elicited from farmers were observed. Clustering results from ADMIXTURE analysis was validated using the assumption-free Discriminant Analysis of Principal Components (DAPC) method.
Conclusion
We show that genome-wide SNP markers from increasingly affordable GBS methods coupled with complementary cluster analysis is a powerful tool for fine-scale population structure analysis and variety identification. Moreover, the ancestry estimation provides a framework for quantifying the contribution of exotic germplasm or older improved varieties to the genetic background of contemporary improved cultivars.
【 授权许可】
2015 Rabbi et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Fig. 6. | 19KB | Image | download |
Fig. 5. | 86KB | Image | download |
Fig. 4. | 17KB | Image | download |
20150128155037195.pdf | 193KB | download | |
Fig. 2. | 12KB | Image | download |
Fig. 1. | 146KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Fermont AM, van Asten PJA, Tittonell P, van Wijk MT, Giller KE. Closing the cassava yield gap: an analysis from smallholder farms in east africa. Field Crop Res. 2009; 112(1):24-36.
- [2]Asfaw S, Kassie M, Simtowe F, Lipper L. Poverty reduction effects of agricultural technology adoption: a micro-evidende from rural Tanzania. J Develop Studies. 2012;48(9):1288––1305.
- [3]Morris ML, Tripp R, Dankyi AA. Adoption and impacts of improved maize production technology: a case study of the Ghana grains development project. CIMMYT, Mexico, D.F; 1999.
- [4]Shiferaw B, Kassie M, Jaleta M, Yirga C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy. 2014; 44:272-84.
- [5]Elhoumaizi M, Saaidi M, Oihabi A, Cilas C. Phenotypic diversity of date-palm cultivars(Phoenix dactylifera L.) from Morocco. Genet Resour Crop Ev. 2002;49(5):483–90.
- [6]Racchi ML, Bove A, Turchi A, Bashir G, Battaglia M, Camussi A. Genetic characterization of Libyan date palm resources by microsatellite markers. 3. Biotech. 2014; 4(1):21-32.
- [7]Duminil J, Di Michele M. Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosystems. 2009; 143(3):528-42.
- [8]Yoon MS, Song QJ, Choi IY, Specht JE, Hyten DL, Cregan PB. BARCSoySNP23: a panel of 23 selected SNPs for soybean cultivar identification. Theor Appl Genet. 2007; 114(5):885-99.
- [9]Jones AG, Ardren WR. Methods of parentage analysis in natural populations. Mol Ecol. 2003; 12(10):2511-23.
- [10]Morris ML, Heisey PW. Estimating the benefits of plant breeding research: methodological issues and practical challenges. Agr Econ. 2003; 29(3):241-52.
- [11]Ercisli S, Ipek A, Barut E. SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochem Genet. 2011;49(9–10):555–61.
- [12]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al.. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One. 2011; 6(5): Article ID e19379
- [13]Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping - by - sequencing analysis pipeline. PLoS One. 2014;9(2), e90346.
- [14]Olsen KM, Schaal BA. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci. 1999;96(10):5586–91.
- [15]Why cassava?. FAO, Rome, Italy; 2008.
- [16]Statistical database. FAO, Rome, Italy; 2014.
- [17]Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, Olasanmi B et al.. Phenotypic approaches to drought in cassava: review. Front Physiol. 2013; 4:93.
- [18]Mtunguja MK, Laswai HS, Muzanila YC, Ndunguru J. Farmer’s Knowledge on Selection and Conservation of Cassava (Manihot esculanta) Genetic Resources in Tanzania. J Biol, Agriculture HealthCare 2014;4(10):74–78
- [19]Angelucci F. Analysis of incentives and disincentives for cassava in Ghana. Technical notes series. MAFAP, FAO, Rome; 2013
- [20]Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation Version II. Plant Mol Biol Rep. 1983; 1:19-21.
- [21]Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, Ikpan AS et al.. Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. Crop Sci. 2014; 54(4):1384-96.
- [22]Hamblin MT, Rabbi IY. The effects of restriction-enzyme choice on properties of genotyping-by-sequencing libraries: a study in cassava (Manihot esculenta). Crop Sci. 2014;54(6):2603–8.
- [23]Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Software. 2010; 33(1):1-22.
- [24]Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19(9):1655-64.
- [25]Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010; 11(1):1-15. BioMed Central Full Text
- [26]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559-75.
- [27]Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004; 20(2):289-90.
- [28]R Core Team. R: A language and environment for statistical computing. In. Vienna, Austria.URL http://www.R-project.org/. R Foundation for Statistical Computing 2013.
- [29]Noli E, Teriaca MS, Conti S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed. 2013; 132(6):525-31.
- [30]Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics. 2011; 12:246. BioMed Central Full Text
- [31]Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984; 38(6):1358-70.
- [32]Liu Y, Nyunoya T, Leng S, Belinsky SA, Tesfaigzi Y, Bruse S. Softwares and methods for estimating genetic ancestry in human populations. Hum Genomics 2013, 7:1. doi:10.1186/1479-7364-7-1
- [33]Frichot E, Mathieu F, Trouillon T, Bouchard G, Francois O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014; 196(4):973-83.
- [34]Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24(11):1403-5.
- [35]Legendre P, Legendre L. Numerical ecology. 2nd ed. Elsevier, Amsterdam; 1998.
- [36]Weiss KM, Long JC. Non-Darwinian estimation: my ancestors, my genes’ ancestors. Genome Res. 2009; 19(5):703-10.
- [37]Akano O, Dixon O, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet. 2002; 105(4):521-5.
- [38]Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, et al. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun. 2014;5, 10.1038/ncomms6110
- [39]Duputié A, DeléTre M, De Granville J-J, McKey D. Population genetics of Manihot esculenta ssp. flabellifolia gives insight into past distribution of xeric vegetation in a postulated forest refugium area in northern Amazonia. Mol Ecol. 2009;18(13):2897–907.
- [40]Fauquet CM, Taylor NJ, Tohme J. The global cassava partnership for the 21 st century (GCP21). Trop Plant Biol. 2012; 5(1):4-8.
- [41]Kyamanywa S, Kashaija I, Getu E, Amata R, Senkesha N, Kullaya A. Enhancing food security through improved seed systems of appropriate varieties of cassava, potato and sweetpotato resilient to climate change in Eastern Africa. Nairobi, Kenya: ILRI; 2011. p. 1–28.
- [42]Krishna VV, Spielman DJ, Veettil PC, Ghimire S. An empirical examination of the dynamics of varietal turnover in Indian wheat. IFPRI, Washington, DC; 2014.
- [43]Busti A, Caceres M, Calderini O, Arcioni S, Pupilli F. RFLP markers for cultivar identification in tall fescue (Festuca arundinacea Schreb.). Genet Resour Crop Evol. 2004;51(4):443–8.
- [44]Wu B, Zhong G-Y, Yue J-Q, Yang R-T, Li C, Li Y-J et al.. Identification of pummelo cultivars by using a panel of 25 selected snps and 12 dna segments. PLoS One. 2014; 9(4): Article ID e94506
- [45]Rodrigues DH, Neto FdA, Schuster I. Identification of essentially derived soybean cultivars using microsatellite markers. Crop Breed Appl Biotechnol. 2008;8(1):74—78.
- [46]Rosenberg NA, Li LM, Ward R, Pritchard JK. Informativeness of genetic markers for inference of ancestry. Am J Hum Genet. 2003; 73(6):1402-22.
- [47]Huckins LM, Boraska V, Franklin CS, Floyd JAB, Southam L et al.. Using ancestry-informative markers to identify fine structure across 15 populations of European origin. Eur J Hum Genet. 2014; 22(10):1190-200.
- [48]Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G et al.. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat. 2009; 30(1):69-78.
- [49]Qin P, Li Z, Jin W, Lu D, Lou H, Shen J et al.. A panel of ancestry informative markers to estimate and correct potential effects of population stratification in Han Chinese. Eur J Hum Genet. 2014; 22(2):248-53.
- [50]Sawler J, Reisch B, Aradhya MK, Prins B, Zhong G-Y, Schwaninger H et al.. Genomics assisted ancestry deconvolution in grape. PLoS One. 2013; 8(11): Article ID e80791
- [51]de Oliveira EJ, Ferreira CF, da Silva SV, de Jesus ON, Oliveira GA, da Silva MS. Potential of SNP markers for the characterization of Brazilian cassava germplasm. Theor Appl Genet. 2014; 127(6):1423-40.
- [52]Kawuki RS, Herselman L, Labuschagne MT, Nzuki I, Ralimanana I, Bidiaka M, et al. Genetic diversity of cassava (Manihot esculenta Crantz) landraces and cultivars from southern, eastern and central Africa. Plant Genet Resour. 2013;11(02):170–81.