期刊论文详细信息
BMC Microbiology
Biochemical and functional characterization of SpdA, a 2′, 3′cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti
Jacques Batut1  Anne-Marie Garnerone1  Catherine Masson-Boivin1  Véréna Poinsot2  Céline Mathieu-Demazière1 
[1] CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France;Laboratoire IMRCP UMR UPS/CNRS 5623, Université Paul Sabatier, Toulouse, Cedex 31062, France
关键词: Crp;    RNA degradation;    Phosphodiesterase;    2′, 3′cAMP;    3′, 5′cAMP;    Sinorhizobium;   
Others  :  1142604
DOI  :  10.1186/1471-2180-13-268
 received in 2013-07-25, accepted in 2013-11-11,  发布年份 2013
PDF
【 摘 要 】

Background

3′, 5′cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3′, 5′cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection.

Results

Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase.

First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3′, 5′cAMP for expression.

Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3′, 5′cAMP and, instead, high activity against the positional isomers 2′, 3′cAMP and 2′, 3′cGMP.

Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2′, 3′cAMP and 3′, 5′cAMP in vitro at high concentration. We further showed that Clr is a 3′, 5′cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2′, 3′cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta.

Fourth, we have shown a negative impact of exogenous 2′, 3′cAMP on 3′, 5′cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3′, 5′cAMP signaling.

Conclusions

SpdA is a nodule-expressed 2′, 3′ specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3′, 5′cAMP-based signaling from 2′, 3′ cyclic nucleotides of metabolic origin.

【 授权许可】

   
2013 Mathieu-Demazière et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328095540847.pdf 2379KB PDF download
Figure 6. 59KB Image download
Figure 5. 75KB Image download
Figure 4. 98KB Image download
Figure 3. 162KB Image download
Figure 2. 96KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007, 5(8):619-633.
  • [2]Murray JD: Invasion by invitation: rhizobial infection in legumes. Mol Plant Microbe Interact 2011, 24(6):631-639.
  • [3]Tian CF, Garnerone AM, Mathieu-Demazière C, Masson-Boivin C, Batut J: Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis. Proc Natl Acad Sci USA 2012, 109(17):6751-6756.
  • [4]He Y, Li N, Chen Y, Chen X, Bai J, Wu J, Xie J, Ying H: Cloning, expression, and characterization of an adenylate cyclase from Arthrobacter sp. CGMCC 3584. Appl Microbiol Biotechnol 2012, 96(4):963-970.
  • [5]McDonough KA, Rodriguez A: The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 2012, 10(1):27-38.
  • [6]Linder JU: Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol Life Sci 2006, 63(15):1736-1751.
  • [7]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17(10):458-466.
  • [8]Shenroy AR, Visweswariah SS: Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett 2004, 561(1–3):11-21.
  • [9]Kimura Y, Mishima Y, Nakano H, Takegawa K: An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. J Bacteriol 2002, 184(13):3578-3585.
  • [10]Kimura Y, Ohtani M, Takegawa K: An adenylyl cyclase, CyaB, acts as an osmosensor in Myxococcus xanthus. J Bacteriol 2005, 187(10):3593-3598.
  • [11]Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR: Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 2009, 460(7251):98-102.
  • [12]Agarwal N, Bishai WR: cAMP signaling in Mycobacterium tuberculosis. Indian J Exp Biol 2009, 47(6):393-400.
  • [13]Topal H, Fulcher NB, Bitterman J, Salazar E, Buck J, Levin LR, Cann MJ, Wolfgang MC, Steegborn C: Crystal structure and regulation mechanisms of the CyaB adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. J Mol Biol 2012, 416(2):271-286.
  • [14]Hall RA, De Sordi L, Maccallum DM, Topal H, Eaton R, Bloor JW, Robinson GK, Levin LR, Buck J, Wang Y, et al.: CO(2) acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog 2010, 6(11):e1001193.
  • [15]Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y: Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008, 4(1):28-39.
  • [16]Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, et al.: Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 2001, 98(17):9877-9882.
  • [17]Richter W: 3′,5′ Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Proteins 2002, 46(3):278-286.
  • [18]Shenoy AR, Visweswariah SS: New messages from old messengers: cAMP and mycobacteria. Trends Microbiol 2006, 14(12):543-550.
  • [19]Jackson EK: The 2′,3′-cAMP-adenosine pathway. Am J Physiol Renal Physiol 2011, 301(6):F1160-F1167.
  • [20]Shenoy AR, Sreenath N, Podobnik M, Kovacevic M, Visweswariah SS: The Rv0805 gene from Mycobacterium tuberculosis encodes a 3′,5′-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 2005, 44(48):15695-15704.
  • [21]Macfadyen LP, Ma C, Redfield RJ: A 3′,5′ cyclic AMP (cAMP) phosphodiesterase modulates cAMP levels and optimizes competence in Haemophilus influenzae Rd. J Bacteriol 1998, 180(17):4401-4405.
  • [22]Imamura R, Yamanaka K, Ogura T, Hiraga S, Fujita N, Ishihama A, Niki H: Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J Biol Chem 1996, 271(41):25423-25429.
  • [23]Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497-3500.
  • [24]Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS: A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J Biol Chem 2009, 284(47):32846-32857.
  • [25]Marx CJ, Lidstrom ME: Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 2002, 33(5):1062-1067.
  • [26]Trülzsch K, Roggenkamp A, Pelludat C, Rakin A, Jacobi C, Heesemann J: Cloning and characterization of the gene encoding periplasmic 2′,3′-cyclic phosphodiesterase of Yersinia enterocolitica O:8. Microbiology 2001, 147(Pt 1):203-213.
  • [27]Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, De Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, et al.: Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res 2013, 20(4):339-354.
  • [28]Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH: Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 2004, 14(1):10-20.
  • [29]Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC: In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol 2010, 192(11):2779-2790.
  • [30]Liu J, Burns DM, Beacham IR: Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2′,3′-cyclic phosphodiesterase. J Bacteriol 1986, 165(3):1002-1010.
  • [31]Keppetipola N, Shuman S: A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2′,3′-cyclic nucleotide phosphodiesterase activity. J Biol Chem 2008, 283(45):30942-30949.
  • [32]Kimura Y, Okazaki N, Takegawa K: Enzymatic characteristics of two novel Myxococcus xanthus enzymes, PdeA and PdeB, displaying 3′,5′- and 2′,3′-cAMP phosphodiesterase, and phosphatase activities. FEBS Lett 2009, 583(2):443-448.
  • [33]Galperin MY, Bairoch A, Koonin EV: A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci 1998, 7(8):1829-1835.
  • [34]Botha FC, Dennis DT: Isozymes of phosphoglyceromutase from the developing endosperm of Ricinus communis: isolation and kinetic properties. Arch Biochem Biophys 1986, 245(1):96-103.
  • [35]Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM: The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2′,3′-cyclic phosphodiesterase, 2′-nucleotidase, and phosphatase activities. J Biol Chem 2004, 279(35):36819-36827.
  • [36]Hantke K, Winkler K, Schultz JE: Escherichia coli exports cyclic AMP via TolC. J Bacteriol 2011, 193(5):1086-1089.
  • [37]Jackson EK, Ren J, Mi Z: Extracellular 2′,3′-cAMP is a source of adenosine. J Biol Chem 2009, 284(48):33097-33106.
  • [38]Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, et al.: MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013, 41(Database issue):D636-D647.
  • [39]Capela D, Filipe C, Bobik C, Batut J, Bruand C: Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Mol Plant Microbe Interact 2006, 19(4):363-372.
  • [40]Arcus VL, McKenzie JL, Robson J, Cook GM: The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng Des Sel 2011, 24(1-2):33-40.
  • [41]Min AB, Miallau L, Sawaya MR, Habel J, Cascio D, Eisenberg D: The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site. Protein Sci 2012, 21(11):1754-1767.
  • [42]Jung K, Fried L, Behr S, Heermann R: Histidine kinases and response regulators in networks. Curr Opin Microbiol 2012, 15(2):118-124.
  • [43]Pesavento C, Hengge R: Bacterial nucleotide-based second messengers. Curr Opin Microbiol 2009, 12(2):170-176.
  • [44]Corrigan RM, Gründling A: Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013, 11(8):513-524.
  • [45]Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, De Bruijn FJ, et al.: Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 2004, 17(3):292-303.
  • [46]Pandey SP, Minesinger BK, Kumar J, Walker GC: A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Nucleic Acids Res 2011, 39(11):4691-4708.
  • [47]Miller JH: Molecular genetics experiments. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory; 1972.
  文献评价指标  
  下载次数:62次 浏览次数:7次