期刊论文详细信息
BMC Genomics
RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters
Robert C Schuurink1  Michel A Haring1  Eleni A Spyropoulou1 
[1] Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
关键词: High-throughput sequencing;    Transcription factor;    Terpene biosynthesis;    Tomato trichomes;   
Others  :  1217189
DOI  :  10.1186/1471-2164-15-402
 received in 2014-02-19, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases.

Results

A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter.

Conclusions

High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field.

【 授权许可】

   
2014 Spyropoulou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705020921498.pdf 1225KB PDF download
Figure 5. 102KB Image download
Figure 4. 42KB Image download
Figure 3. 69KB Image download
Figure 2. 98KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schilmiller AL, Last RL, Pichersky E: Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 2008, 54(4):702-711.
  • [2]Tissier A: Glandular trichomes: what comes after expressed sequence tags? Plant J 2012, 70(1):51-68.
  • [3]McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, Descour A, Shi F, Larson M, Schilmiller A, An L, Jones AD, Pichersky E, Soderlund CA, Gang DR: Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol 2011, 155(1):524-539.
  • [4]Schilmiller A, Shi F, Kim J, Charbonneau AL, Holmes D, Daniel Jones A, Last RL: Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 2010, 62:391-403.
  • [5]Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P: Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 2009, 149(1):499-514.
  • [6]Xie Z, Kapteyn J, Gang DR: A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 2008, 54(3):349-361.
  • [7]Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E: An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 2001, 125(2):539-555.
  • [8]Cui H, Zhang ST, Yang HJ, Ji H, Wang XJ: Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol 2011, 11:76. BioMed Central Full Text
  • [9]Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE: Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 2010, 51(10):1627-1637.
  • [10]Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R: Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci U S A 2000, 97(6):2934-2939.
  • [11]Aziz N, Paiva NL, May GD, Dixon RA: Transcriptome analysis of alfalfa glandular trichomes. Planta 2005, 221(1):28-38.
  • [12]Wang W, Wang Y, Zhang Q, Qi Y, Guo D: Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 2009, 10(1):465. BioMed Central Full Text
  • [13]Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA: Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 2008, 148(3):1254-1266.
  • [14]Luo H, Li Y, Sun C, Wu Q, Song J, Sun Y, Steinmetz A, Chen S: Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 2010, 10:209. BioMed Central Full Text
  • [15]Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MT, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E, Haring MA, Schuurink RC: RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol 2011, 77(4–5):323-336.
  • [16]van Schie CC, Haring MA, Schuurink RC: Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 2007, 64(3):251-263.
  • [17]Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MT, Haring MA, Schuurink RC: The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 2009, 151(2):925-935.
  • [18]Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E: Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci U S A 2009, 106(26):10865-10870.
  • [19]Kang JH, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA: The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 2010, 154(1):262-272.
  • [20]Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC: Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci U S A 2012, 109(49):20124-20129.
  • [21]Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E: The tomato terpene synthase gene family. Plant Physiol 2011, 157(2):770-789.
  • [22]Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schafer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E: Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell 2013, 25(6):2022-2036.
  • [23]De Geyter N, Gholami A, Goormachtig S, Goossens A: Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 2012, 17(6):349-359.
  • [24]Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY: Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 2012, 54(10):703-712.
  • [25]van der Fits L, Memelink J: ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 2000, 289(5477):295-297.
  • [26]Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J: The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 2011, 67(1):61-71.
  • [27]Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L: The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in catharanthus roseus. Plant Physiol 2011, 157(4):2081-2093.
  • [28]Xu YH, Wang JW, Wang S, Wang JY, Chen XY: Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 2004, 135(1):507-515.
  • [29]Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B: Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 2009, 50(12):2146-2161.
  • [30]Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY: The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 2012, 5(2):353-365.
  • [31]Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K: AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 2013, 198(4):1191-1202.
  • [32]Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R: JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 2004, 16(7):1938-1950.
  • [33]Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY: Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 2012, 24(6):2635-2648.
  • [34]Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC: Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 2004, 135(1):483-495.
  • [35]Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC: Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 2004, 135(4):2025-2037.
  • [36]Blast2Go http://www.blast2go.com webcite
  • [37]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [38]Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA: The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 2004, 16(1):126-143.
  • [39]Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 2007, 448(7154):661-665.
  • [40]Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 2008, 105(19):7100-7105.
  • [41]Tholl D, Lee S: Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 2011, 9:e0143.
  • [42]Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y: Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 2008, 148(3):1219-1228.
  • [43]Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M: Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 2011, 234(5):903-914.
  • [44]Thabet I, Guirimand G, Courdavault V, Papon N, Godet S, Dutilleul C, Bouzid S, Giglioli-Guivarc’h N, Clastre M, Simkin AJ: The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. J Plant Physiol 2011, 168(17):2110-2116.
  • [45]Spyropoulou EA: Transcription Factors Regulating Terpene Synthases in Tomato Trichomes. University of Amsterdam, Plant Physiology Department; 2012. [PhD thesis] http://dare.uva.nl/en/record/420428 webcite
  • [46]The GENSCAN Web Server at MIT http://genes.mit.edu/GENSCAN.html webcite
  • [47]Spyropoulou EA, Haring MA, Schuurink RC: Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the Terpene Synthase 5 promoter. Plant Mol Biol 2014, 84(3):345-357.
  • [48]Walter MH, Hans J, Strack D: Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 2002, 31(3):243-254.
  • [49]Paetzold H, Garms S, Bartram S, Wieczorek J, Uros-Gracia EM, Rodriguez-Concepcion M, Boland W, Strack D, Hause B, Walter MH: The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol Plant 2010, 3(5):904-916.
  • [50]Sanchez-Hernandez C, Lopez MG, Delano-Frier JP: Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ 2006, 29(4):546-557.
  • [51]Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, Yamane H: Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol Biol 2007, 65(1–2):177-187.
  • [52]Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Concepcion M, St-Pierre B, Burlat V: Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 2007, 65(1–2):13-30.
  • [53]Arimura G, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithofer A, Boland W: Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 2008, 227(2):453-464.
  • [54]Kim YB, Kim SM, Kang MK, Kuzuyama T, Lee JK, Park SC, Shin SC, Kim SU: Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiol 2009, 29(5):737-749.
  • [55]Yang Z, Park H, Lacy GH, Cramer CL: Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell 1991, 3(4):397-405.
  • [56]Choi D, Bostock RM, Avdiushko S, Hildebrand DF: Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci U S A 1994, 91(6):2329-2333.
  • [57]Ha SH, Kim JB, Hwang YS, Lee SW: Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochim Biophys Acta 2003, 1625(3):253-260.
  • [58]Hui D, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT: Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiol 2003, 131(4):1877-1893.
  • [59]Kondo K, Uritani I, Oba K: Induction mechanism of 3-hydroxy-3-methylglutaryl-CoA reductase in potato tuber and sweet potato root tissues. Biosci Biotechnol Biochem 2003, 67(5):1007-1017.
  • [60]Bede JC, Musser RO, Felton GW, Korth KL: Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 2006, 60(4):519-531.
  • [61]Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC: Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 2006, 224(5):1197-1208.
  • [62]Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E: The tomato cis-prenyltransferase gene family. Plant J 2012, 73(4):640-652.
  • [63]TAIR10 genome release http://arabidopsis.org webcite
  • [64]Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R: The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 2011, 23(2):701-715.
  • [65]PLACE http://www.dna.affrc.go.jp/PLACE/ webcite
  • [66]MEME http://meme.sdsc.edu/meme/intro.html webcite
  • [67]Singh KB: Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 1998, 118(4):1111-1120.
  • [68]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K: Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 1997, 9(10):1859-1868.
  • [69]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15(1):63-78.
  • [70]CLCbio bioinformatics software http://www.clcbio.com/ webcite
  • [71]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33(Web Server issue):W116-W120.
  • [72]Ogata H, Goto S, Fujibuchi W, Kanehisa M: Computation with the KEGG pathway database. Biosystems 1998, 47(1–2):119-128.
  • [73]PASW Statistics 17.0 http://www.spss.com webcite
  • [74]Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y: Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 2012, 287(6):495-513.
  • [75]van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ: pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 1995, 4(4):288-290.
  文献评价指标  
  下载次数:5次 浏览次数:10次