期刊论文详细信息
BMC Genomics
Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves
Baoshan Wang1  Mingli Liu1  Zhen Yang1  Na Sui1 
[1] Key Laboratory of Plant Stress Research, College of life science, Shandong Normal University, Jinan 250014, Shandong, PR China
关键词: Sweet sorghum;    Salt stress;    Photosynthesis;    Sugar content;    Transcriptomic profile;   
Others  :  1222411
DOI  :  10.1186/s12864-015-1760-5
 received in 2015-03-09, accepted in 2015-07-07,  发布年份 2015
PDF
【 摘 要 】

Background

Sweet sorghum is an annual C4 crop considered to be one of the most promising bio-energy crops due to its high sugar content in stem, yet it is poorly understood how this plant increases its sugar content in response to salt stress. In response to high NaCl, many of its major processes, such as photosynthesis, protein synthesis, energy and lipid metabolism, are inhibited. Interestingly, sugar content in sweet sorghum stems remains constant or even increases in several salt-tolerant species.

Results

In this study, the transcript profiles of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed in the presence of 0 mM or 150 mM NaCl in order to elucidate the molecular mechanisms that lead to higher sugar content during salt stress. We identified 864 and 930 differentially expressed genes between control plants and those subjected to salt stress in both M-81E and Roma strains. We determined that the majority of these genes are involved in photosynthesis, carbon fixation, and starch and sucrose metabolism. Genes important for maintaining photosystem structure and for regulating electron transport were less affected by salt stress in the M-81E line compared to the salt-sensitive Roma line. In addition, expression of genes encoding NADP + -malate enzyme and sucrose synthetase was up-regulated and expression of genes encoding invertase was down-regulated under salt stress in M-81E. In contrast, the expression of these genes showed the opposite trend in Roma under salt stress.

Conclusions

The results we obtained revealed that the salt-tolerant genotype M-81E leads to increased sugar content under salt stress by protecting important structures of photosystems, by enhancing the accumulation of photosynthetic products, by increasing the production of sucrose synthetase and by inhibiting sucrose decomposition.

【 授权许可】

   
2015 Sui et al.

【 预 览 】
附件列表
Files Size Format View
20150821020542534.pdf 3822KB PDF download
Fig. 12. 29KB Image download
Fig. 11. 22KB Image download
Fig. 10. 42KB Image download
Fig. 9. 113KB Image download
Fig. 8. 133KB Image download
Fig. 7. 62KB Image download
Fig. 6. 16KB Image download
Fig. 5. 12KB Image download
Fig. 4. 33KB Image download
Fig. 3. 29KB Image download
Fig. 2. 14KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

【 参考文献 】
  • [1]Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001; 6(2):66-71.
  • [2]Hasegawa PBR, Zhu J, Bohnert H. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000; 51:463-499.
  • [3]Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P. Salinity stress and salt tolerance. 2011.
  • [4]Zhifang G, Loescher WH. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ. 2003; 26(2):275-283.
  • [5]Shi H, Lee Bh WSJ, Zhu JK. Overexpression of a plasma membrane Na + /H + antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech. 2003; 21(1):81-85.
  • [6]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech. 1999; 17(3):287-291.
  • [7]Almodares A, Hadi M. Production of bioethanol from sweet sorghum: A review. Afr J Agric Res. 2009; 4(9):772-780.
  • [8]Gnansounou E, Dauriat A, Wyman C. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol. 2005; 96(9):985-1002.
  • [9]Dai LY, Zhang LJ, Jiang SJ, Yin KD. Saline and alkaline stress genotypic tolerance in sweet sorghum is linked to sodium distribution. Acta Agric Scand Sec B Soil Plant Sci. 2014;64(6):471-81.
  • [10]Fan H, Wu HD, Zhou ML, Zhang Y, Ding TL, Wang BS. Planting sweet sorghum in Yellow River delta: the cultivation measure, yield and effect on soil microflora. Adv Mater Res. 2012; 518:81-87.
  • [11]Ding TL, Song J, Guo JR, Sui N, Fan H, Chen M et al.. The cultivation technique for increasing the stalk sugar content of energy plant sweet sorghum in Yellow River delta. Adv Mat Res. 2013; 724:437-442.
  • [12]Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T. Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crop Res. 2011; 120(1):38-46.
  • [13]Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell Online. 2011; 23(6):2087-2105.
  • [14]Flügge UI. Phosphate translocators in plastids. Annu Rev Plant Biol. 1999; 50(1):27-45.
  • [15]Braun DM, Slewinski TL. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol. 2009; 149(1):71-81.
  • [16]Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007; 581(12):2309-2317.
  • [17]Kalaitzis P, Bazakos C, Manioudaki M. Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS One. 2012; 7(8):e42931.
  • [18]Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L et al.. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 2005; 139(2):822-835.
  • [19]Wang Y, Yang L, Zheng Z, Grumet R, Loescher W, Zhu JK et al.. Transcriptomic and physiological variations of three arabidopsis ecotypes in response to salt stress. PLoS One. 2013; 8(7):e69036.
  • [20]Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. 2007; 63(5):609-623.
  • [21]Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosché M et al.. Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol. 2011; 31(12):1335-55.
  • [22]Sun W, Xu X, Zhu H, Liu A, Liu L, Li J et al.. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol. 2010; 51(6):997-1006.
  • [23]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25(1):25-29.
  • [24]Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000; 28(1):33-36.
  • [25]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004; 32(suppl 1):D277-D280.
  • [26]van Amerongen H, van Grondelle R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B. 2001; 105(3):604-617.
  • [27]Galka P, Santabarbara S, Khuong TTH, Degand H, Morsomme P, Jennings RC et al.. Functional analyses of the plant photosystem I–light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell Online. 2012; 24(7):2963-2978.
  • [28]Green BR, Pichersky E, Kloppstech K. Chlorophyll a/b-binding proteins: an extended family. Trends Biochem Sci. 1991; 16:181-186.
  • [29]Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol. 2006; 140(3):793-804.
  • [30]Moradi F, Ismail AM. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot. 2007; 99(6):1161-1173.
  • [31]Sudhir P, Murthy S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica. 2004; 42(2):481-486.
  • [32]Wydrzynski TJ. Water splitting by Photosystem II—where do we go from here? Photosynth Res. 2008; 98(1–3):43-51.
  • [33]Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ. PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry. 2005; 44(2):805-815.
  • [34]Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell Online. 2004; 16(8):2164-2175.
  • [35]Suorsa M, Sirpiö S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S et al.. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem. 2006; 281(1):145-150.
  • [36]Scheller HV, Naver H, Møller BL. Molecular aspects of photosystem I. Physiol Plant. 1997; 100(4):842-851.
  • [37]Knoetzel J, Mant A, Haldrup A, Jensen PE, Scheller HV. PSI-O, a new 10-kDa subunit of eukaryotic photosystem I. FEBS Lett. 2002; 510(3):145-148.
  • [38]Yadavalli V, Malleda C, Subramanyam R. Protein-protein interactions by molecular modeling and biochemical characterization of PSI-LHCI supercomplexes from Chlamydomonas reinhardtii. Mol Biosyst. 2011; 7(11):3143-3151.
  • [39]Jensen PE, Gilpin M, Knoetzel J, Scheller HV. The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J Biol Chem. 2000; 275(32):24701-24708.
  • [40]Chitnis PR. Photosystem I. Plant Physiol. 1996; 111(3):661.
  • [41]Haldrup A, Naver H, Scheller HV. The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem. Plant J. 1999; 17(6):689-698.
  • [42]Whitney SM, Houtz RL, Alonso H. Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol. 2011; 155(1):27-35.
  • [43]Hoffmann Thoma G, Hinkel K, Nicolay P, Willenbrink J. Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol Plant. 1996; 97(2):277-284.
  • [44]Sunseri F, Palazzo D, Montemurro N, Montemurro F. Salinity tolerance in sweet sorghum (Sorghum bicolor L. Moench): Field performance under salt stress. Ital J Agron. 1998; 2:111-116.
  • [45]Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol. 2000; 12(4):431-434.
  • [46]Tester M, Davenport R. Na + tolerance and Na + transport in higher plants. Ann Bot. 2003; 91(5):503-527.
  • [47]Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008; 59:651-681.
  • [48]Carden DE, Walker DJ, Flowers TJ, Miller AJ. Single-cell measurements of the contributions of cytosolic Na + and K + to salt tolerance. Plant Physiol. 2003; 131(2):676-683.
  • [49]Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K et al.. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004; 135(3):1697-1709.
  • [50]García‐Legaz M, Ortiz J, Garcí‐Lidón A, Cerda A. Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiol Plant. 1993; 89(3):427-432.
  • [51]James RA, Rivelli AR, Munns R, von Caemmerer S. Factors affecting CO 2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol. 2002; 29(12):1393-1403.
  • [52]Plaut Z, Federman E. Acclimation of CO 2 assimilation in cotton leaves to water stress and salinity. Plant Physiol. 1991; 97(2):515-522.
  • [53]Yang X, Liang Z, Wen X, Lu C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol. 2008; 66(1–2):73-86.
  • [54]Rothermel BA, Nelson T. Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem. 1989; 264(33):19587-19592.
  • [55]Chang GG, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry. 2003; 42(44):12721-12733.
  • [56]Sun SB, Shen QR, Wan JM, Liu ZP. Induced expression of the gene for NADP-malic enzyme in leaves of Aloe vera L. under salt stress. Acta Biochim Biophys Sinica Chin Ed. 2003; 35(5):423-429.
  • [57]Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K et al.. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol. 2007; 64(1–2):49-58.
  • [58]Casati P, Drincovich MF, Edwards GE, Andreo CS. Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res. 1999; 61(2):99-105.
  • [59]Cheng Y, Long M. A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol Lett. 2007; 29(7):1129-1134.
  • [60]Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot. 2003; 49(1):69-76.
  • [61]Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell Online. 2002; 14(suppl 1):S165-S183.
  • [62]Lin CC, Kao CH. Effect of NaCl stress on H 2 O 2 metabolism in rice leaves. Plant Growth Regul. 2000; 30(2):151-155.
  • [63]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002; 7(9):405-410.
  • [64]Møller IM, Rasmusson AG. The role of NADP in the mitochondrial matrix. Trends Plant Sci. 1998; 3:21-27.
  • [65]Qazi HA, Paranjpe S, Bhargava S. Stem sugar accumulation in sweet sorghum–activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol. 2012; 169(6):605-613.
  • [66]Whittaker A, Botha FC. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol. 1997; 115(4):1651-1659.
  • [67]Gong X, Liu M, Zhang L, Ruan Y, Ding R, Ji Y et al.. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA‐dependent pathway. Physiol Plant. 2015; 153(1):119-136.
  • [68]Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 1990; 25(3):147-150.
  • [69]Arnon DI. Copper enzymes in isolated chloroplasts, polyohenoloxidase in beta vulgaris. Plant Physiol. 1949; 24(1):1-15.
  • [70]Spiro RG. Analysis of sugars found in glycoproteins. Methods Enzymol. 1966; 8:3-26.
  • [71]Zhong S, Joung JG, Zheng Y, Chen Y, Liu B, Shao Y et al.. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc. 2011; 2011(8):940-9.
  • [72]Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS et al.. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol. 2011; 12(11):R114. BioMed Central Full Text
  • [73]Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al.. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-556.
  • [74]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq. Bioinformatics (Oxford, England). 2009; 25(9):1105-1111.
  • [75]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
  • [76]Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005; 33(suppl 1):D501-D504.
  • [77]Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S et al.. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004; 32(Database issue):D115-119.
  • [78]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389-3402.
  • [79]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England). 2005; 21(18):3674-3676.
  • [80]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001; 25(4):402-408.
  文献评价指标  
  下载次数:161次 浏览次数:23次