期刊论文详细信息
BMC Systems Biology
CD8 + T cell response to adenovirus vaccination and subsequent suppression of tumor growth: modeling, simulation and analysis
Zhijun Wang1  David J Klinke II2  Qing Wang1 
[1] Department of Computer Sciences, Mathematics, and Engineering, Shepherd University, Shepherdstown 25443, WV, USA;Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown 25606, WV, USA
关键词: Impulsive ordinary differential equation;    Modeling;    Vaccination;    Adenovirus;   
Others  :  1233561
DOI  :  10.1186/s12918-015-0168-9
 received in 2014-12-12, accepted in 2015-05-15,  发布年份 2015
【 摘 要 】

Background

Using immune checkpoint modulators in the clinic to increase the number and activity of cytotoxic T lymphocytes that recognize tumor antigens can prolong survival for metastatic melanoma. Yet, only a fraction of the patient population receives clinical benefit. In short, these clinical trials demonstrate proof-of-principle but optimizing the specific therapeutic strategies remains a challenge. In many fields, CAD (computer-aided design) is a tool used to optimize integrated system behavior using a mechanistic model that is based upon knowledge of constitutive elements. The objective of this study was to develop a predictive simulation platform for optimizing anti-tumor immunity using different treatment strategies.

Methods

To better understand the therapeutic role that cytotoxic CD8 + T cells can play in controlling tumor growth, we developed a multi-scale mechanistic model of the biology using impulsive differential equations and calibrated it to a self-consistent data set.

Results

The multi-scale model captures the activation and differentiation of naïve CD8 + T cells into effector cytotoxic T cells in the lymph node following adenovirus-mediated vaccination against a tumor antigen, the trafficking of the resulting cytotoxic T cells into blood and tumor microenvironment, the production of cytokines within the tumor microenvironment, and the interactions between tumor cells, T cells and cytokines that control tumor growth. The calibrated model captures the modest suppression of tumor cell growth observed in the B16F10 model, a transplantable mouse model for metastatic melanoma, and was used to explore the impact of multiple vaccinations on controlling tumor growth.

Conclusions

Using the calibrated mechanistic model, we found that the cytotoxic CD8 + T cell response was prolonged by multiple adenovirus vaccinations. However, the strength of the immune response cannot be improved enough by multiple adenovirus vaccinations to reduce tumor burden if the cytotoxic activity or local proliferation of cytotoxic T cells in response to tumor antigens is not greatly enhanced. Overall, this study illustrates how mechanistic models can be used for in silico screening of the optimal therapeutic dosage and timing in cancer treatment.

【 授权许可】

   
2015 Wang et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 12. 33KB Image download
Fig. 6. 112KB Image download
Fig. 5. 120KB Image download
Fig. 4. 134KB Image download
Fig. 3. 124KB Image download
Fig. 2. 98KB Image download
Fig. 1. 48KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Figure 12.

【 参考文献 】
  • [1]Parish IA, Kaech SM: Diversity in cd8(+) t cell differentiation. Curr Opin Immunol 2009, 21(3):291-7.
  • [2]Dunn GP, Old LJ, Schreiber RD: The three es of cancer immunoediting. Annu Rev Immunol 2004, 22:329-60.
  • [3]Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012, 366(26):2443-454.
  • [4]Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-23.
  • [5]Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al.: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011, 17(13):4550-557.
  • [6]Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al.: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011, 29(7):917-24.
  • [7]Porter DL, Levine BL, Kalos M, Bagg A, June CH: Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011, 365(8):725-33.
  • [8]Old LJ: Cancer vaccines: an overview. Cancer Immun 2008, 8 Suppl 1:1.
  • [9]Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al.: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009, 361(19):1838-47.
  • [10]Palucka K, Banchereau J: Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12(4):265-77.
  • [11]Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D: Part I: Vaccines for solid tumours. Lancet Oncol 2004, 5(11):681-9.
  • [12]Jensen-Jarolim E, Singer J: Cancer vaccines inducing antibody production: more pros than cons. Expert Rev Vaccines 2011, 10(9):1281-9.
  • [13]Tatsis N, Ertl HC: Adenoviruses as vaccine vectors. Mol. Ther 2004, 10(4):616-29.
  • [14]Barouch DH, Nabel GJ: Adenovirus vector-based vaccines for human immunodeficiency virus type 1. Hum Gene Ther 2005, 16(2):149-56.
  • [15]McGray AJ, Bernard D, Hallett R, Kelly R, Jha M, Gregory C, et al.: Combined vaccination and immunostimulatory antibodies provides durable cure of murine melanoma and induces transcriptional changes associated with positive outcome in human melanoma patients. Oncoimmunology 2012, 7(4):419-31.
  • [16]Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S, et al.: The CD8 + t cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol 2006, 176(1):200-10.
  • [17]Yang TC, Millar J, Groves T, Zhou W, Grinshtein N, Parsons R, et al.: On the role of cd4 + t cells in the cd8 + t-cell response elicited by recombinant adenovirus vaccines. Mol Ther 2007, 15(5):997-1006.
  • [18]Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, et al.: Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 2010, 18(8):1430-9.
  • [19]Eftimie R, Bramson JL, Earn DJ: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol 2011, 73(1):2-32.
  • [20]Pappalardo F, Palladini A, Pennisi M, Castiglione F, Motta S: Mathematical and computational models in tumor immunology. Math Model Nat Phenom 2012, 7(1):25.
  • [21]Tsygvintsev A, Marino S, Kirschner DE: Mathematical methods and models in Biomedicine lecture notes on mathematical modelling in the life Sciences. Springer, New York; 2013.
  • [22]Wodarz D, Komarova NL: Computational Biology of Cancer: Lecture Notes and Mathematical Modeling. World Scientific, New Jersey; 2005.
  • [23]Kuznetsov V, Makalkyn M, Taylor M, Perelson A, Chaplain MA: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 1994, 56(2):295-321.
  • [24]Kirschner D, Panetta JC: Modeling immunotherapy of the tumor-immune interaction. J Math Biol 1998, 37(3):235-52.
  • [25]de Pillis LG, Gu W, Radunskaya AE: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 2006, 238(4):841-62.
  • [26]Eftimie R, Dushoff J, Bridle B, Bramson JL, Earn DJD: Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions. Bull Math Biol 2011, 73(12):2932-961.
  • [27]Wilson S, Levy D: A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy. Bull Math Biol 2012, 74(7):1485-1500.
  • [28]Kim PS, Lee PP: Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol 2012, 8(10):16.
  • [29]Yafia R: A study of differential equation modeling malignant tumor cells in compitition with immune system. Int J Biomath 2011, 4(2):185-206.
  • [30]Bagheri N, Shiina M, Lauffenburger DA, Korn WM: A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by mek-inhibition. PLoS Comput Biol 2011, 17(2):10.
  • [31]de Pillis LG, Fister KR, Gu W, Collins C, Daub M, Gross D, et al.: Seeking bang-bang solutions of mixed immuno-chemotherapy of tumor. Electonic J Diff Equat 2007, 2007(171):1-24.
  • [32]Gadkar KG, Shoda LK, Kreuwel HT, Ramanujan S, Zheng Y, Whiting CC, et al.: Dosing and timing effects of anti-cd40l therapy: predictions from a mathematical model of type 1 diabetes. Ann N Y Acad Sci 2007, 1103:63-8.
  • [33]Zheng Y, Bresson D, Fradkin M, Chan JR, von Herrath M, Chan W: Biosimulations predict optimal oral insulin/anti-cd3 and oral insulin/exendin-4 combination treatment regimens for the reversal of diabetes in the non-obese diabetic (nod) mouse. Clin Immunol 2008, 127:101-2.
  • [34]Pappalardo F, Martinez Forero I, Pennisi M, Palazon A, Melero I, Motta S: Simb16: modeling induced immune system response against b16-melanoma. PLoS One 2011, 6(10):12.
  • [35]Dranoff G: Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol 2012, 12(1):61-6.
  • [36]van Elsas A, Hurwitz AA, Allison JP: Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999, 190(3):355-66.
  • [37]Mellman I, Coukos G, Dranoff G: Cancer immunotherapy comes of age. Nature 2011, 480(7378):480-9.
  • [38]Chen DS, Mellman I: Oncology meets immunology: the cancer-immunity cycle. Immunity 2013, 39(1):1-10.
  • [39]C, 57BL/6 Inbred Mouse. http://www.sageresearchmodels.com/research-models/inbred-mice/c57bl6.
  • [40]Linderman JJ, Riggs T, Pande M, Miller M, Marino S, Kirschner DE: Characterizing the dynamics of cd4+ t cell priming within a lymph node. J Immunol 2010, 184(6):2873-885.
  • [41]Moy BC, Petzold GL, Badiner GJ, Kelly RC, Aristoff PA, Adams EG, et al.: Characterization of B16 melanoma cells resistant to the CC-1065 analogue U-71,184. Cancer Res 1990, 50(8):2485-492.
  • [42]Abbas AK, Lichtman AH: Cellular and Molecular Immunology. Saunders, Philadelphia; 2003.
  • [43]McGray AJ, Hallett R, Bernard D, Swift SL, Zhu Z, Teoderascu F, et al.: Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol Ther 2014, 22(1):206-18.
  • [44]Leitch J, Fraser K, Lane C, Putzu K, Adema GJ, Zhang QJ, et al.: CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 2004, 172(9):5200-205.
  • [45]Klinke DJ, Wang Q: Understanding immunology via engineering design: the role of mathematical prototyping. Comput Math Methods Med 2012, 2012:676015.
  • [46]Klinke DJ: In silico model-based inference: A contemporary approach for hypothesis testing in network biology. Biotechnol Prog 2014, 30(6):1247-61.
  • [47]Wen FT, Thisted RA, Rowley DA, Schreiber H: A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth. Oncoimmunology 2012, 1(2):172-8.
  • [48]Budhu S, Loike JD, Pandolfi A, Han S, Catalano G, Constantinescu A, et al.: Cd 8+ t cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J Exp Med 2010, 207(81):223-35.
  • [49]Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002, 298:850-4.
  • [50]Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al.: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998, 4:321-7.
  • [51]Tumeh P, Harview C, Yearley J, Shintaku I, Taylor E, Robert L, et al.: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515:568-71.
  文献评价指标  
  下载次数:58次 浏览次数:21次