期刊论文详细信息
BMC Neuroscience
Functional associations among G protein-coupled neurotransmitter receptors in the human brain
Skirmantas Janušonis1 
[1] Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
关键词: Receptor sets;    Communities;    Network;    mRNA;    G protein-coupled receptor;    Human brain;   
Others  :  1122569
DOI  :  10.1186/1471-2202-15-16
 received in 2013-07-22, accepted in 2013-12-30,  发布年份 2014
PDF
【 摘 要 】

Background

The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level.

Results

A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated.

Conclusions

The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders.

【 授权许可】

   
2014 Janušonis; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214022507919.pdf 1854KB PDF download
Figure 6. 156KB Image download
Figure 5. 45KB Image download
Figure 4. 127KB Image download
Figure 3. 66KB Image download
Figure 2. 56KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Henny P, Brown MT, Micklem BR, Magill PJ, Bolam JP: Stereological and ultrastructural quantification of the afferent synaptome of individual neurons. Brain Struct Funct 2013,  . in press
  • [2]Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T: Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res 2003, 12:283-290.
  • [3]Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hardemark A, Betsholtz C, Herlenius E, Fredholm BB: Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 2001, 98:9407-9412.
  • [4]Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El YM, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M: Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 1997, 388:674-678.
  • [5]Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK: Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 1999, 274:16694-16700.
  • [6]Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH: Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA 1998, 95:15049-15054.
  • [7]Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J, Hornung JP, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA: Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 2006, 313:536-540.
  • [8]Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R: Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 2004, 24:412-419.
  • [9]Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S: Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 1996, 273:645-647.
  • [10]Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu XT, White NM, Graybiel AM, White FJ, Tonegawa S: Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 1997, 19:837-848.
  • [11]Segu L, Lecomte MJ, Wolff M, Santamaria J, Hen R, Dumuis A, Berrard S, Bockaert J, Buhot MC, Compan V: Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice. PLoS One 2010, 5:e9529.
  • [12]Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev 1992, 72:165-229.
  • [13]Duvernoy HM, Delon S, Vannson JL: Cortical blood vessels of the human brain. Brain Res Bull 1981, 7:519-579.
  • [14]Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D: Regional variation in brain capillary density and vascular response to ischemia. Brain Res 2001, 910:81-93.
  • [15]Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES: Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 2003, 37:233-247.
  • [16]Gutknecht L, Araragi N, Merker S, Waider J, Sommerlandt FM, Mlinar B, Baccini G, Mayer U, Proft F, Hamon M, Schmitt AG, Corradetti R, Lanfumey L, Lesch KP: Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. PLoS One 2012, 7:e43157.
  • [17]Migliarini S, Pacini G, Pelosi B, Lunardi G, Pasqualetti M: Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Mol Psychiatry 2013, 18:1106-1118.
  • [18]Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas JG: Embryonic depletion of serotonin affects cortical development. Eur J Neurosci 2007, 26:331-344.
  • [19]Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, Davis D, Hardman J, Launer L, Masaki K, Tanner CM, White LR: Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 2004, 56:532-539.
  • [20]Bruno JP, Snyder AM, Stricker EM: Effect of dopamine-depleting brain lesions on suckling and weaning in rats. Behav Neurosci 1984, 98:156-161.
  • [21]Castaneda E, Whishaw IQ, Lermer L, Robinson TE: Dopamine depletion in neonatal rats: effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood. Brain Res 1990, 508:30-39.
  • [22]Robertson D, Haile V, Perry SE, Robertson RM, Phillips JA III, Biaggioni I: Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension 1991, 18:1-8.
  • [23]Timmers HJ, Deinum J, Wevers RA, Lenders JW: Congenital dopamine-beta-hydroxylase deficiency in humans. Ann N Y Acad Sci 2004, 1018:520-523.
  • [24]Arcelli P, Frassoni C, Regondi MC, De BS, Spreafico R: GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 1997, 42:27-37.
  • [25]Sherman SM, Guillery RW: Exploring the Thalamus and Its Role in Cortical Function. Cambridge: The MIT Press; 2006.
  • [26]Yamazoe I, Takeuchi Y, Matsushita H, Kawano H, Sawada T: Serotonergic heterotypic sprouting in the unilaterally dopamine-depleted mouse neostriatum. Dev Neurosci 2001, 23:78-83.
  • [27]Martin P, Ohno M, Southerland SB, Mailman RB, Suzuki K: Heterotypic sprouting of serotonergic forebrain fibers in the brindled mottled mutant mouse. Brain Res Dev Brain Res 1994, 77:215-225.
  • [28]Thomas SA, Matsumoto AM, Palmiter RD: Noradrenaline is essential for mouse fetal development. Nature 1995, 374:643-646.
  • [29]Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC: Neurotransmitter switching in the adult brain regulates behavior. Science 2013, 340:449-453.
  • [30]Albizu L, Moreno JL, Gonzalez-Maeso J, Sealfon SC: Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS Neurol Disord Drug Targets 2010, 9:636-650.
  • [31]Rozenfeld R, Bushlin I, Gomes I, Tzavaras N, Gupta A, Neves S, Battini L, Gusella GL, Lachmann A, Ma’ayan A, Blitzer RD, Devi LA: Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS One 2012, 7:e29239.
  • [32]Fribourg M, et al.: Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 2011, 147:1011-1023.
  • [33]Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC: Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 2011, 61:770-777.
  • [34]Lohse MJ: Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol 2010, 10:53-58.
  • [35]Janušonis S: Relationships among variables and their equilibrium values: caveats of time-less interpretation. Biol Rev Camb Philos Soc 2012, 87:275-289.
  • [36]Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF: Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 2008, 13:786-799. 741
  • [37]Templin JS, Bang SJ, Soiza-Reilly M, Berde CB, Commons KG: Patterned expression of ion channel genes in mouse dorsal raphe nucleus determined with the Allen Mouse Brain Atlas. Brain Res 2012, 1457:1-12.
  • [38]Ayoub AE, Oh S, Xie Y, Leng J, Cotney J, Dominguez MH, Noonan JP, Rakic P: Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci USA 2011, 108:14950-14955.
  • [39]Ball S, Gilbert TL, Overly CC: The human brain online: an open resource for advancing brain research. PLoS Biol 2012, 10:e1001453.
  • [40]Shen EH, Overly CC, Jones AR: The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 2012, 35:711-714.
  • [41]Sonawane AR, Bhattacharyay A, Santhanam MS, Ambika G: Evolving networks with bimodal degree distribution. Eur Physical J B 2012, 85:118.
  • [42]Palla G, Derenyi I, Farkas I, Vicsek T: Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435:814-818.
  • [43]Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ: A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993, 2:767-773.
  • [44]Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, Bennett ER, Nemanov L, Katz M, Belmaker RH: Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet 1996, 12:78-80.
  • [45]Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, Grady DL, Ryder OA, Spence MA, Swanson JM, Moyzis RK: The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 2004, 74:931-944.
  • [46]Sasaki JY, Kim HS, Mojaverian T, Kelley LD, Park IY, Janušonis S: Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene. Soc Cogn Affect Neurosci 2013, 8:209-215.
  • [47]Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, Kidd KK, Flodman P, Spence MA, Schuck S, Swanson JM, Zhang YP, Moyzis RK: Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA 2002, 99:309-314.
  • [48]Simpson J, Vetuz G, Wilson M, Brookes KJ, Kent L: The DRD4 receptor Exon 3 VNTR and 5′ SNP variants and mRNA expression in human post-mortem brain tissue. Am J Med Genet B Neuropsychiatr Genet 2010, 153B:1228-1233.
  • [49]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
  • [50]Luttrell LM, Gesty-Palmer D: Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010, 62:305-330.
  • [51]Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A: Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 1999, 55:910-920.
  • [52]Mnie-Filali O, Amraei MG, Benmbarek S, Archer-Lahlou E, Penas-Cazorla R, Vilaro MT, Boye SM, Pineyro G: Serotonin 4 receptor (5-HT4R) internalization is isoform-specific: effects of 5-HT and RS67333 on isoforms A and B. Cell Signal 2010, 22:501-509.
  • [53]Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA, Palczewski K: Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry 2012, 51:214-224.
  • [54]Sen N, Snyder SH: Protein modifications involved in neurotransmitter and gasotransmitter signaling. Trends Neurosci 2010, 33:493-502.
  • [55]Kursawe R, Paschke R: Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007, 18:199-207.
  • [56]Delille HK, Mezler M, Marek GJ: The two faces of the pharmacological interaction of mGlu2 and 5-HT2A - Relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 2013, 70:296-305.
  • [57]Rozenfeld R, Devi LA: Receptor heteromerization and drug discovery. Trends Pharmacol Sci 2010, 31:124-130.
  • [58]Rozenfeld R, Devi LA: Exploring a role for heteromerization in GPCR signalling specificity. Biochem J 2011, 433:11-18.
  • [59]Gonzalez-Maeso J, Sealfon SC: Psychedelics and schizophrenia. Trends Neurosci 2009, 32:225-232.
  • [60]Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC: Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008, 452:93-97.
  • [61]Kurita M, Moreno JL, Holloway T, Kozlenkov A, Mocci G, Garcia-Bea A, Hanks JB, Neve R, Nestler EJ, Russo SJ, Gonzalez-Maeso J: Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice. Mol Pharmacol 2013, 83:1166-1175.
  • [62]Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW: Control of sleep and wakefulness. Physiol Rev 2012, 92:1087-1187.
  • [63]Celada P, Puig MV, Martin-Ruiz R, Casanovas JM, Artigas F: Control of the serotonergic system by the medial prefrontal cortex: potential role in the etiology of PTSD and depressive disorders. Neurotox Res 2002, 4:409-419.
  • [64]Lucas G, Compan V, Charnay Y, Neve RL, Nestler EJ, Bockaert J, Barrot M, Debonnel G: Frontocortical 5-HT(4) receptors exert positive feedback on serotonergic activity: Viral transfections, subacute and chronic treatments with 5-HT(4) agonists. Biol Psychiatry 2005, 57:918-925.
  • [65]Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Pineyro G, Sadikot AF, Debonnel G: Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007, 55:712-725.
  • [66]Vollenweider FX, Kometer M: The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 2010, 11:642-651.
  • [67]Hu VW, Addington A, Hyman A: Novel autism subtype-dependent genetic variants are revealed by quantitative trait and subphenotype association analyses of published GWAS data. PLoS One 2011, 6:e19067.
  • [68]Lee TL, Raygada MJ, Rennert OM: Integrative gene network analysis provides novel regulatory relationships, genetic contributions and susceptible targets in autism spectrum disorders. Gene 2012, 496:88-96.
  • [69]Lang UE, Borgwardt S: Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013, 31:761-777.
  • [70]Janušonis S: Direct interaction with no correlation: an experimental pitfall in neural systems. J Neurosci Methods 2012, 206:151-157.
  文献评价指标  
  下载次数:88次 浏览次数:50次