| BMC Medical Genetics | |
| Targeted Next Generation Sequencing reveals previously unidentified TSC1 and TSC2 mutations | |
| Wilfred FJ van IJcken2  Annelies de Klein3  Dicky Halley3  Ans van den Ouweland3  Anneke JA Maat-Kievit3  Floor E Jansen1  Marie-Claire de Wit4  Anna E Koopmans5  Mike MP van den Berg5  Alan Mrsic3  Marianne Hoogeveen-Westerveld3  Lida Prins-Bakker3  Caroline Withagen-Hermans3  Monique van Veghel-Plandsoen3  Christel EM Kockx2  Rutger WW Brouwer2  Mark Nellist3  | |
| [1] Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3508, EA, The Netherlands;Center for Biomics, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015, CN, The Netherlands;Department of Clinical Genetics, Ee-2426, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015, CN, The Netherlands;Department of Neurology, Sophia Children’s Hospital, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015, CN, The Netherlands;Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015, CN, The Netherlands | |
| 关键词: Next Generation Sequencing; HaloPlex; TSC2; TSC1; Tuberous sclerosis complex; | |
| Others : 1171808 DOI : 10.1186/s12881-015-0155-4 |
|
| received in 2014-06-25, accepted in 2015-02-16, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene.
Methods
Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods.
Results
We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses.
Conclusions
Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.
【 授权许可】
2015 Nellist et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150420020543296.pdf | 792KB | ||
| Figure 3. | 21KB | Image | |
| Figure 2. | 67KB | Image | |
| Figure 1. | 13KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Northrup H, Krueger DA: International TSC Consensus Group: Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international TSC consensus conference. Ped Neurol 2013, 49:243-54.
- [2]Roach E, Gomez M, Northrup H: TSC consensus conference: revised clinical diagnostic criteria. J Child Neurol 1998, 13:624-8.
- [3]Northrup H, Koenig M, Au K. Tuberous sclerosis complex. Gene Rev. 2011; [http://www.genetests.org]
- [4]Laplante M, Sabatini DM: mTOR signaling in growth control and disease. Cell 2012, 149:274-93.
- [5]Dibble CC, Manning BD: Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013, 15:555-64.
- [6]Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al.: Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013, 381:125-32.
- [7]Camposano SE, Greenberg E, Kwiatkowski DJ, Thiele EA: Distinct clinical characteristics of tuberous sclerosis complex patients with no mutation identified. Ann Hum Genet 2009, 73:141-6.
- [8]Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, et al.: Survey of somatic mutations in Tuberous Sclerosis Complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 2001, 69:493-503.
- [9]Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11:31-46.
- [10]Qin W, Kozlowski P, Taillon BE, Bouffard P, Holmes AJ, Janne P, et al.: Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 2010, 127:573-82.
- [11]Berglund EC, Lindqvist CM, Hayat S, Overnas E, Henriksson N, Nordlund J, et al.: Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using Haloplex target enrichment. BMC Genomics 2013, 14:856. BioMed Central Full Text
- [12]Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al.: Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype - phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 2005, 13:731-41.
- [13]van den Ouweland AMW, Elfferich P, Zonnenberg BA, Arts WF, Kleefstra T, Nellist MD, et al.: Characterisation of TSC1 promoter deletions in tuberous sclerosis complex patients. Eur J Hum Genet 2011, 19:157-63.
- [14]European Polycystic Kidney Disease Consortium: The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16 Cell 1994, 77:881-94.
- [15]Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, et al.: Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome. Nat Genet 1994, 8:328-32.
- [16]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-60.
- [17]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20:1297-303.
- [18]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.: The sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-9.
- [19]Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, et al.: Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010, 6:e1000962.
- [20]Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A, et al.: The genome of the Netherlands: design, and project goals. Eur J Hum Genet 2014, 22:221-7.
- [21]Ali M, Girimaji SC, Kumar A: Identification of a core promoter and a novel isoform of the human TSC1 gene transcript and structural comparison with mouse homolog. Gene 2003, 320:145-54.
- [22]Xu L, Sterner C, Maheshwar MM, Wilson PJ, Nellist M, Short PM, et al.: Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues. Genomics 1995, 27:475-80.
- [23]Quintana A, Liu F, O’Rourke JP, Ness SA: Identification and regulation of c-myb target genes in MCF-7 cells. BMC Cancer 2011, 11:30. BioMed Central Full Text
PDF