期刊论文详细信息
BMC Genetics
Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses
Zhao-Bang Zeng1  Shengchu Wang2  Luciano Da Costa E Silva2 
[1] Department of Genetics, North Carolina State University, Raleigh, NC 27695-7566, USA;Department of Statistics & Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA
关键词: Statistical genetics;    Score statistics;    QTL by environment interaction;    Power;    Pleiotropy;    Genotypic variance-covariance;    Genetic architecture;   
Others  :  1122434
DOI  :  10.1186/1471-2156-13-67
 received in 2012-03-02, accepted in 2012-06-28,  发布年份 2012
PDF
【 摘 要 】

Background

Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software.

Results

Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits.

Conclusions

The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.

【 授权许可】

   
2012 Da Costa E Silva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214014254277.pdf 488KB PDF download
Figure 3. 22KB Image download
Figure 2. 30KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Lander ES, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121:185-199.
  • [2]Da Costa E Silva, Zeng ZB: Current progress on statistical methods for mapping quantitative trait loci from inbred line crosses. J Biopharmaceutical Stat 2010, 20(2):454-481.
  • [3]Zeng ZB: Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 1993, 90(23):10972-10976.
  • [4]Zeng ZB: Precision mapping of quantitative trait loci. Genetics 1994, 136(4):1457-1468.
  • [5]Haley CS, Knott SA: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992, 69(4):315-324.
  • [6]Haley CS, Knott SA, Elsen JM: Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 1994, 136(3):1195-1207.
  • [7]Kao CH, Zeng ZB, Teasdale RD: Multiple interval mapping for quantitative trait loci. Genetics 1999, 152(3):1203-1216.
  • [8]Satagopan JM, Yandell BS, Newton MA, Osborn TC: A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 1996, 144(2):805-816.
  • [9]Yi N, Shriner D, Banerjee S, Mehta T, Pomp D, Yandell BS: An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects. Genetics 2007, 176(3):1865-1877.
  • [10]Jiang C, Zeng ZB: Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995, 140(3):1111-1127.
  • [11]Zeng ZB, Kao CH, Basten CJ: Estimating the genetic architecture of quantitative traits. Genet Res 1999, 74(3):279-289.
  • [12]Maia JM: Joint analysis of multiple gene expression traits to map expression quantitative trait loci. PhD thesis,North Carolina State University 2007
  • [13]Knott SA, Haley CS: Multitrait least squares for quantitative trait loci detection. Genetics 2000, 156(2):899-911.
  • [14]Liu J, Liu Y, Liu X, Deng HW: Bayesian Mapping of Quantitative Trait Loci for Multiple Complex Traits with the Use of Variance Components. Am J of Human Genet 2007, 81:304-320.
  • [15]Banerjee S, Yandell BS, Yi N: Bayesian quantitative trait loci mapping for multiple traits. Genetics 2008, 179:2275-2289.
  • [16]Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. Genetics 1994, 138(3):963-971.
  • [17]Zou F, Fine JP, Hu J, Lin DY: An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait Loci. Genetics 2004, 168(4):2307-2316.
  • [18]Liu J, Mercer JM, Stam LF, Gibson GC, Zeng ZB, Laurie CC: Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 1996, 142:1129-1145.
  • [19]Zeng ZB, Liu J, Stam LF, Kao CH, Mercer JM, Laurie CC: Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 2000, 154:299-310.
  • [20]Archive for the genotypic and phenotypic data of the motivating example [ ftp://statgen.ncsu.edu/pub/qtlcart/data/zengetal99/ webcite]
  • [21]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003, 100(16):9440-9445.
  • [22]Beavis WD: QTL analyses: power, precision, and accuracy. In Molecular Dissection of Complex Traits. Edited by Paterson AH. New York: CRC Press; 1998:145-162.
  • [23]Wang S, Basten CJ, Zeng ZB: Windows QTL Cartographer 2.51. Department of Statistics, North Carolina State University, Raleigh, NC, 2011 [ http://statgen.ncsu.edu/qtlcart/WQTLCart.htm webcite]
  • [24]Kao CH, Zeng ZB: Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 2002, 160(3):1243-1261.
  • [25]Zeng ZB, Wang T, Zou W: Modeling quantitative trait loci and interpretation of models. Genetics 2005, 169(3):1711-1725.
  • [26]Zellner A: An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 1962, 57(298):348-368.
  • [27]Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D: Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics 2005, 170(3):1333-1344.
  • [28]Jiang C, Zeng ZB: Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 1997, 101:47-58.
  • [29]Dempster AP, Laird N, Rubin D: Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 1977, 39:1-38.
  • [30]Rai SN, Matthews DE: Improving the EM algorithm. Biometrics 1993, 49(2):587-591.
  • [31]Aitkin M, Aitkin I: A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions. Stat Comput 1996, 6:127-130.
  • [32]McLachlan GJ, Krishnan T: The EM Algorithm and Extensions. New York: Wiley-Interscience; 1996.
  • [33]Meng XL, Rubin DB: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 1993, 80(2):267-278.
  • [34]Redner RA, Walker HR: Mixiture densities, maximum likelihood and the EM algorithm. SIAM Rev 1984, 26(2):195-239.
  • [35]Chang MN, Wu R, Wu SS, Casella G: Score statistics for mapping quantitative trait loci. Stat Appl Genet Mol Biol 2009, 8:1-35. [Article 16]
  • [36]Cox DR, Hinkley DV: Theoretical Statistics. London: Chapman and Hall; 1974.
  • [37]Lin D: An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics 2005, 21(6):781-787.
  • [38]Broman KW, Speed TP: A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Series B (Statl Methodology) 2002, 64(4):641-656.
  • [39]Vuong QH: Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 1989, 57(2):307-333.
  • [40]Kapetanios G, Weeks M: Non-nested models and the likelihood ratio statistic: a comparison of simulation and bootstrap based tests. Technical report: University of London, 2003
  • [41]Sugiura N: Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat - Theory and Methods 1978, 7:13-26.
  • [42]Falconer DS: The problem of environment and selection. Am Nat 1952, 86:293-298.
  • [43]Dwyer PS, Macphail MS: Symbolic matrix derivatives. Ann Math Stat 1948, 19(4):517-534.
  • [44]Dwyer PS: Some applications of matrix derivatives in multivariate analysis. J Am Stat Assoc 1967, 62(318):607-625.
  文献评价指标  
  下载次数:33次 浏览次数:27次