期刊论文详细信息
BMC Microbiology
Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues
Rubem F S Menna-Barreto2  Solange L De Castro2  Maria Teresa Molina1  Natalia A De Santana2  Kelly Salomão2 
[1]Instituto de Química Médica, CSIC, Juan de la Cierva 3, Madrid 28006, Spain
[2]Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro RJ 21040-900, Brazil
关键词: Mitochondria;    Experimental chemotherapy;    Juglone;    Naphthoquinones;    Rypanosoma cruzi;   
Others  :  1143172
DOI  :  10.1186/1471-2180-13-196
 received in 2013-05-09, accepted in 2013-08-30,  发布年份 2013
PDF
【 摘 要 】

Background

Naphthoquinones (NQs) are privileged structures in medicinal chemistry due to the biological effects associated with the induction of oxidative stress. The present study evaluated the activities of sixteen NQs derivatives on Trypanosoma cruzi.

Results

Fourteen NQs displayed higher activity against bloodstream trypomastigotes of T. cruzi than benznidazole. Further assays with NQ1, NQ8, NQ9 and NQ12 showed inhibition of the proliferation of axenic epimastigotes and intracelulluar amastigotes interiorized in macrophages and in heart muscle cells. NQ8 was the most active NQ against both proliferative forms of T. cruzi. In epimastigotes the four NQs induced mitochondrial swelling, vacuolization, and flagellar blebbing. The treatment with NQs also induced the appearance of large endoplasmic reticulum profiles surrounding different cellular structures and of myelin-like membranous contours, morphological characteristics of an autophagic process. At IC50 concentration, NQ8 totally disrupted the ΔΨm of about 20% of the parasites, suggesting the induction of a sub-population with metabolically inactive mitochondria. On the other hand, NQ1, NQ9 or NQ12 led only to a discrete decrease of TMRE + labeling at IC50 values. NQ8 led also to an increase in the percentage of parasites labeled with DHE, indicative of ROS production, possibly the cause of the observed mitochondrial swelling. The other three NQs behaved similarly to untreated controls.

Conclusions

NQ1, NQ8, NQ9 and NQ12 induce an autophagic phenotype in T. cruzi epimastigoted, as already observed with others NQs. The absence of oxidative stress in NQ1-, NQ9- and NQ12-treated parasites could be due to the existence of more than one mechanism of action involved in their trypanocidal activity, leaving ROS generation suppressed by the detoxification system of the parasite. The strong redox effect of NQ8 could be associated to the presence of the acetyl group in its structure facilitating quinone reduction, as previously demonstrated by electrochemical analysis. Further experiments using biochemical and molecular approaches are needed to better characterize ROS participation in the mechanism of action of these NQs.

【 授权许可】

   
2013 Salomão et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329011907117.pdf 1750KB PDF download
Figure 5. 135KB Image download
Figure 4. 149KB Image download
Figure 3. 98KB Image download
Figure 2. 186KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rocha MO, Teixeira MM, Ribeiro AL: An update on the management of Chagas’ cardiomyopathy. Exp Rev Anti-Infective Ther 2007, 5:727-743.
  • [2]Rassi A Jr, Rassi A, Marin-Neto JA: Chagas’ disease. Lancet 2010, 375:1388-1402.
  • [3]Schmunis GA, Yadon ZE: Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 2010, 115:14-21.
  • [4]Soeiro MNC, De Castro SL: Screening of potential anti-Trypanosoma cruzi candidates: In vitro and in vivo studies. Open Med Chem J 2011, 5:21-30.
  • [5]O’Brien PJ: Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 1991, 80:1-41.
  • [6]Bastien JW: Pharmacopeia of qollahuaya Andeans. J Ethnopharmacol 1983, 8:97-111.
  • [7]Arenas P: Medicine and magic among the maka Indians of the Paraguayan Chaco. J Ethnopharmacol 1987, 21:279-295.
  • [8]Constantino L, Barlocco D: Privileged structures as leads in medicinal chemistry. Curr Med Chem 2006, 13:65-85.
  • [9]Pinto AV, De Castro SL: The trypanocidal activity of naphthoquinones: a review. Molecules 2009, 14:4570-4590.
  • [10]Salas CO, Faúndez M, Morello A, Maya JD, Tapia RA: Natural and synthetic naphthoquinones active against Trypanosoma cruzi: an initial step towards new drugs for Chagas’ disease. Curr Med Chem 2011, 18:144-161.
  • [11]Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ: Role of quinones in toxicology. Chem Res Toxicol 2000, 13:135-160.
  • [12]Babula P, Adam V, Kizek R, Sladky Z, Havel L: Naphthoquinones as allelochemical triggers of programmed cell death. Environm Exp Bot 2009, 65:330-337.
  • [13]Esnault S, Braun RK, Shen ZJ, Xiang Z, Heninger E, Love RB, Sandor M, Malter JS: Pin1 modulates the type 1 immune response. PLoS One 2007, 2:e226.
  • [14]Montenegro RC, Molina MT, Araújo AJ, Marinho Filho JDB, Rocha DD, Lopéz-Montero E, Goulart MO, Bento ES, Alves APNN, Pessoa C, Moraes MO, Costa-Lotufo LV: Cytotoxic activity of naphthoquinones with special emphasis on juglone and its 5-O-methyl derivative. Chem Biol Interact 2010, 184:439-448.
  • [15]Xu HL, Yu XF, Qu SC, Zhang R, Qu XR, Chen YP, Ma XY, Sui DY: Anti-proliferative effect of juglone from juglans mandshurica maxim on human leukemia cell HL-60 by inducing apoptosis through the mitochondria-dependent pathway. Eur J Pharmacol 2010, 645:4-22.
  • [16]Ribeiro KAL, Carvalho CM, Molina MT, Lima EP, López-Montero E, Reys JRM, Oliveira MBF, Pinto AV, Santana AEG, Goulart MOF: Activities of naphthoquinones against Aedes aegypti, vector of dengue and Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Acta Trop 2009, 111:44-50.
  • [17]Pinto AV, Neves Pinto C, Pinto MCFR, Santa-Rita RM, Pezzella C, De Castro SL: Trypanocidal activity of synthetic heterocyclic derivatives from active quinones from Tabebuia sp. Arzneim-Forsch 1997, 47(I):74-79.
  • [18]Fournet A, Angelo A, Muñoz V, Roblot F, Hocquemiller R, Cavé A: Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. J Ethnopharmacol 1992, 37:159-164.
  • [19]Fournet A, Barrios AA, Muñoz V: Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. J Ethnopharmacol 1994, 41:19-37.
  • [20]Lopes JN, Cruz FS, Docampo R, Vasconcellos ME, Sampaio MC, Pinto AV, Gilbert B: In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Ann Trop Med Parasitol 1978, 72:523-531.
  • [21]Docampo R, De Souza W, Cruz FS, Roitman I, Cover B, Gutteridge WE: Ultrastructural alterations and peroxide formation induced by naphthoquinones in different stages of Trypanosoma cruzi. Z Parasitenkd 1978, 57:189-198.
  • [22]Menna-Barreto RFS, Henriques-Pons A, Pinto AV, Morgado-Diaz JA, Soares MJ, De Castro SL: Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. J Antimicrob Chemother 2005, 56:1034-1041.
  • [23]Menna-Barreto RFS, Corrêa JR, Pinto AV, Soares MJ, De Castro SL: Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitol Res 2007, 101:895-905.
  • [24]Menna-Barreto RFS, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, De Castro SL: The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 2009, 47:644-653.
  • [25]Menna-Barreto RFS, Salomão K, Dantas AP, Santa-Rita RM, Soares MJ, Barbosa HS, De Castro SL: Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 2009, 40:157-168.
  • [26]Menna-Barreto RFS, Corrêa JR, Cascabulho CM, Fernandes MC, Pinto AV, Soares MJ, De Castro SL: Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 2009, 136:499-510.
  • [27]Menna-Barreto RFS, Beghini DG, Ferreira AT, Pinto AV, De Castro SL, Perales J: A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. J Proteomics 2010, 73:2306-2315.
  • [28]Fernandes MC, Silva EN Jr, Pinto AV, De Castro SL, Menna-Barreto RFS: A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology 2012, 139:26-36.
  • [29]Soeiro MNC, De Castro SL: Trypanosoma cruzi targets for new chemotherapeutic approaches. Exp Opin Ther Targets 2009, 13:105-121.
  • [30]Terada H: The interaction of highly active uncouplers with mitochondria. Biochem Biophys Acta 1981, 639:225-242.
  • [31]Docampo R, Cruz FS, Boveris A, Muniz RP, Esquivel DM: Lipid peroxidation and the generation of free radicals, superoxide anion, and hydrogen peroxide in β-lapachone-treated Trypanosoma cruzi epimastigotes. Arch Biochem Biophys 1978, 186:292-297.
  • [32]Salmon-Chemin L, Buisine E, Yardley V, Kohler S, Debreu MA, Landry V, Sergheraert C, Croft SL, Krauth-Siegel RL, Davioud-Charvet E: 2- and 3-Substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 2001, 44:548-565.
  • [33]Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W, Schmitz ML: Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene 1999, 18:747-757.
  • [34]Irigoin F, Cibils L, Comini MA, Wilkinson SR, Flohe L, Radi R: Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Rad Biol Med 2008, 45:733-742.
  • [35]Costa EO, Molina MT, Abreu FC, Silva FAS, Costa CO, Pinho W Jr, Valentim IB, Aguilera–Venegas B, Pérez-Cruz F, Norambuena E, Olea-Azar C, Goulart MOF: Electrochemical and spectroscopic investigation of bioactive naphthoquinones. Int J Electrochem Sci 2012, 7:6524-6538.
  • [36]Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, De Castro SL, Menna-Barreto RFS, Mottram JC, Navarro M, Rigden DJ, Romano PS, Stoka V, Turk B, Michels PA: Autophagy in protists. Autophagy 2011, 7:127-158.
  • [37]Baehrecke EH: Autophagy: dual roles in life and death? Nat Rev in Mol Cell Biol 2005, 6:505-510.
  • [38]Bera A, Singh S, Nagaraj R, Vaidya T: Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 2003, 127:23-35.
  • [39]Yorimitsu T, Klionsky DJ: Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 2007, 17:279-285.
  • [40]Walker NI, Harmon BV, Gobé GC, Kerr JF: Patterns of cell death methods. Arch Exp Pathol 1988, 13:18-54.
  • [41]Guimarães CA, Linden R: Programmed cell death: apoptosis and alternative death styles. Eur J Biochem 2004, 271:1638-1650.
  • [42]Tietze LF, Güntner C, Gericke KM: A Diels-Alder reaction for the total synthesis of the novel antibiotic antitumor agent mensacarcin. Eur J Org Chem 2005, 12:2459-2467.
  • [43]Molina MT, Navarro C, Moreno A, Csákÿ AG: Arylation of benzo-fused 1,4-quinones by the addition of boronic acids under dicationic Pd(II)-catalysis. Org Lett 2009, 11:4938-4941.
  • [44]Ortega A, Rincón Á, Jiménez-Aliaga KL, Bermejo-Bescós P, Martín-Aragón S, Molina MT, Csákÿ AG: Synthesis and evaluation of arylquinones as BACE1 inhibitors, β-amyloid peptide aggregation inhibitors, and destabilizers of preformed β-amyloid fibrils. Bioorg Med Chem Lett 2011, 21:2183-2187.
  • [45]Fieser LF, Dunn JT: Addition of dienes to halogenated and hydroxylated naphthoquinones. J Am Chem Soc 1937, 59:1016-1021.
  • [46]Grunwell JR, Karipides A, Wigal CT, Heinzman SW, Parlow J, Surso JA, Clayton L, Fleitz FJ, Daffner M, Stevens JE: The formal oxidative addition of electon-rich transoid dienes to bromonaphthoquinones. J Org Chem 1991, 56:91-95.
  • [47]Parker KA, Sworin ME: Assignment of regiochemistry to substituted naphthoquinones by bromo juglone derivatives chemical and spectroscopic methods amino-, hydroxy-, and bromojuglone derivatives. J Org Chem 1981, 46:3218-3223.
  • [48]Brimble MA, Brenstrum TJ: C-Glycosylation of tri-O-benzyl-2-deoxy-D-glucose: synthesis of naphthyl substituted 3,6-dioxabicyclo [322] nonanes. J Chem Soc Perkin 2001, 1:1612-1623.
  • [49]Tietze LF, Gericke KM, Schuberth I: Synthesis of highly functionalized anthraquinones and evaluation of their antitumor activity. Eur J Org Chem 2007, 27:4563-4577.
  • [50]De Castro SL, Pinto MCFR, Pinto AV: Screening of natural and synthetic drugs against Trypanosoma cruzi: I-Establishing a structure/activity relationship. Microbios 1994, 78:83-90.
  • [51]Meirelles MNL, Araujo-Jorge TC, Miranda CF, De Souza W, Barbosa HS: Interaction of Trypanosoma cruzi with heart muscle cells: ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro. Eur J Cell Biol 1986, 41:198-206.
  • [52]Salomão K, De Souza EM, Carvalho AS, Silva EF, Fraga CAM, Barbosa HS, De Castro SL: In vitro and in vivo activity of 1,3,4-thiadiazole-2-arylhydrazone derivatives of megazol on Trypanosoma cruzi. Antimicrob Agents Chemother 2010, 54:2023-2031.
  • [53]Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983, 65:55-63.
  • [54]Santa-Rita RM, Henriques-Pons A, Barbosa HS, De Castro SL: Effect of the lysophospholipid analogues edelfosine, ilmofosine and miltefosine against Leishmania amazonensis. J Antimicrob Chemother 2004, 54:704-710.
  文献评价指标  
  下载次数:18次 浏览次数:18次