期刊论文详细信息
BMC Genomics
Peroxidase gene discovery from the horseradish transcriptome
Gerhard G Thallinger1  Anton Glieder2  Michael Schubert1  Florian W Krainer3  Laura Näätsaari3 
[1] Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria;Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010 Graz, Austria;Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
关键词: 454 sequencing;    Pichia pastoris;    Transcriptome sequencing;    Armoracia rusticana;    Horseradish peroxidase;   
Others  :  1217648
DOI  :  10.1186/1471-2164-15-227
 received in 2013-11-28, accepted in 2014-03-18,  发布年份 2014
PDF
【 摘 要 】

Background

Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana.

Results

In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes.

Conclusions

This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes.

【 授权许可】

   
2014 Näätsaari et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707172513324.pdf 694KB PDF download
Figure 3. 71KB Image download
Figure 2. 16KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Veitch NC: Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 2004, 65:249-259.
  • [2]Greco O, Rossiter S, Kanthou C, Folkes LK, Wardman P, Tozer GM, Dachs GU: Horseradish peroxidase-mediated gene therapy: choice of prodrugs in oxic and anoxic tumor conditions. Mol Cancer Ther 2001, 1:151-160.
  • [3]Morawski B, Quan S, Arnold FH: Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol Bioeng 2001, 76:99-107.
  • [4]Wagner M, Nicell JA: Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 2002, 36:4041-4052.
  • [5]Azevedo AM, Martins VC, Prazeres DMF, Vojinović V, Cabral JMS, Fonseca LP: Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 2003, 9:199-247.
  • [6]Van de Velde F, van Rantwijk F, Sheldon RA: Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 2001, 19:73-80.
  • [7]Hoyle MC: High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol 1977, 60:787-793.
  • [8]Passardi F, Cosio C, Penel C, Dunand C: Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 2005, 24:255-265.
  • [9]Fujiyama K, Takemura H, Shibayama S, Kobayashi K, Choi JK, Shinmyo A, Takano M, Yamada Y, Okada H: Structure of the horseradish peroxidase isozyme C genes. Eur J Biochem 1988, 173:681-687.
  • [10]Fujiyama K, Takemura H, Shinmyo A, Okada H, Takano M: Genomic DNA structure of two new horseradish-peroxidase-encoding genes. Gene 1990, 89:163-169.
  • [11]Bartonek-Roxå E, Eriksson H, Mattiasson B: The cDNA sequence of a neutral horseradish peroxidase. Biochim Biophys Acta 1991, 1088:245-250.
  • [12]Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG: Differential Activity and Structure of Highly Similar Peroxidases. Spectroscopic, Crystallographic, and Enzymatic Analyses of Lignifying Arabidopsis thaliana Peroxidase A2 and Horseradish Peroxidase A2. Biochemistry 2001, 40:11013-11021.
  • [13]Morita Y, Mikami B, Yamashita H, Lee JY, Aibara S, Sato M, Katsube Y, Tanaka N: Primary and crystal structures of horseradish peroxidase isozyme E5. In Biochemical, Molecular and Physiolgical Aspects of Plant Peroxidase. Edited by Lobarzewski J, Greppin H, Penel C, Gaspar T. Lublin and Geneva: University of M. Curie-Sklodowska and University of Geneva; 1991:81-88.
  • [14]Shannon LM, Kay E, Jow Y, Shannon LXI, Lew JY: Chemistry and Metabolism of Macromolecules: Peroxidase Isozymes from Horseradish Roots: I. Isolation and physical Properties. J Biol Chem 1966, 241:2166-2172.
  • [15]Aibara S, Yamashita H, Mori E, Kato M, Morita Y: Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. J Biochem 1982, 92:531-539.
  • [16]Aibara S, Kobayashi T, Morita Y: Isolation and properties of basic isoenzymes of horseradish peroxidase. J Biochem 1981, 90:489-496.
  • [17]Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB: Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 2007, 144:32-42.
  • [18]Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA: Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 2010, 11:180. BioMed Central Full Text
  • [19]Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EMK, Chen S: De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 2010, 11:262. BioMed Central Full Text
  • [20]Schmid J, Müller-Hagen D, Bekel T, Funk L, Stahl U, Sieber V, Meyer V: Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii. BMC Genomics 2010, 11:329. BioMed Central Full Text
  • [21]Wong MML, Cannon CH, Wickneswari R: Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics 2011, 12:342. BioMed Central Full Text
  • [22]Brown AP, Kroon JTM, Swarbreck D, Febrer M, Larson TR, Graham I a, Caccamo M, Slabas AR: Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One 2012, 7:e30100.
  • [23]Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE: Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biol 2013, 13:12. BioMed Central Full Text
  • [24]Egan AN, Schlueter J, Spooner DM: Applications of next-generation sequencing in plant biology. Am J Bot 2012, 99:175-185.
  • [25]Johnson MTJ, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, Chase MW, Clarke ND, Covshoff S, Depamphilis CW, Edger PP, Goh F, Graham S, Greiner S, Hibberd JM, Jordon-Thaden I, Kutchan TM, Leebens-Mack J, Melkonian M, Miles N, Myburg H, Patterson J, Pires JC, Ralph P, Rolf M, Sage RF, Soltis D, Soltis P, Stevenson D, Stewart CN, et al.: Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One 2012, 7:e50226.
  • [26]Schliesky S, Gowik U, Weber APM, Bräutigam A: RNA-Seq Assembly - Are We There Yet? Front. Plant Sci. 2012, 3:220.
  • [27]The 1KP Project http://www.onekp.com webcite
  • [28]Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim Y-B, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensen CW: Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 2013, 166:122-134.
  • [29]The PhytoMetaSyn Project http://www.phytometasyn.ca/ webcite
  • [30]Góngora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, Dellapenna D, McKnight TD, O’Connor S, Buell CR: Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 2012, 7:e52506.
  • [31]The Medicinal Plant Genomics Resource http://www.medicinalplantgenomics.msu.edu webcite
  • [32]Wang T-Y, Chen H-L, Lu M-YJ, Chen Y-C, Sung H-M, Mao C-T, Cho H-Y, Ke H-M, Hwa T-Y, Ruan S-K, Hung K-Y, Chen C-K, Li J-Y, Wu Y-C, Chen Y-H, Chou S-P, Tsai Y-W, Chu T-C, Shih C-C a, Li W-H, Shih M-C: Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol. Biofuels 2011, 4:24. BioMed Central Full Text
  • [33]Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 2002, 30:281-283.
  • [34]Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, Steidl C, Holt R a, Jones S, Sun M, Leung G, Moore R, Severson T, Taylor G a, Teschendorff AE, Tse K, Turashvili G, Varhol R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra M a, Aparicio S: Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 2009, 461:809-813.
  • [35]Chepelev I, Wei G, Tang Q, Zhao K: Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 2009, 37:e106.
  • [36]Garg R, Patel RK, Tyagi AK, Jain M: De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 2011, 18:53-63.
  • [37]Codon Usage Database http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3704 webcite
  • [38]Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, Maia JM, Heinzen EL, Goedert JJ, Goldstein DB: Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol 2010, 11:R57. BioMed Central Full Text
  • [39]Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK, Willoughby DA, Simons JF, Egholm M, Hunt JH, Hudson ME, Robinson GE: Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 2007, 318:441-444.
  • [40]Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008, 17:1636-1647.
  • [41]Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 2008, 9:312. BioMed Central Full Text
  • [42]Pop M, Salzberg SL: Bioinformatics challenges of new sequencing technology. Trends Genet 2008, 24:142-149.
  • [43]Natarajan P, Parani M: De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 2011, 12:191. BioMed Central Full Text
  • [44]Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8:R143. BioMed Central Full Text
  • [45]Hale MC, McCormick CR, Jackson JR, Dewoody JA: Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 2009, 10:203. BioMed Central Full Text
  • [46]Delker C, Pöschl Y, Raschke A, Ullrich K, Ettingshausen S, Hauptmann V, Grosse I, Quint M: Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell 2010, 22:2184-2200.
  • [47]Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M: What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 2009, 21:1877-1896.
  • [48]Wright F: The “effective number of codons” used in a gene. Gene 1990, 87:23-29.
  • [49]Gouy M, Gautier C: Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 1982, 10:7055-7074.
  • [50]Ikemura T: Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 1985, 2:13-34.
  • [51]Sharp PM, Matassi G: Codon usage and genome evolution. Curr Opin Genet Dev 1994, 4:851-860.
  • [52]Bulmer M: The Selection-Mutation-Drift Theory of Synonymous Codon Usage. Genetics 1991, 129:897-907.
  • [53]Li WH: Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol 1987, 24:337-345.
  • [54]Carels N, Bernardi G: The compositional organization and the expression of the Arabidopsis genome. FEBS Lett 2000, 472:302-306.
  • [55]Carels N, Bernardi G: Two classes of genes in plants. Genetics 2000, 154:1819-1825.
  • [56]Vinogradov AE: DNA helix: the importance of being GC-rich. Nucleic Acids Res 1838–1844, 2003:31.
  • [57]Zhang L, Kasif S, Cantor CR, Broude NE: GC/AT-content spikes as genomic punctuation marks. Proc Natl Acad Sci U S A 2004, 101:16855-16860.
  • [58]Jabbari K, Bernardi G: CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene 1998, 224:123-127.
  • [59]Galtier N, Piganeau G, D. M , Duret L: GC-Content Evolution in Mammalian Genomes: The Biased Gene Conversion Hypothesis. Genetics 2001, 159:907-911.
  • [60]Mouchiroud D, D’Onofrio G, Aïssani B, Macaya G, Gautier C, Bernardi G: The distribution of genes in the human genome. Gene 1991, 100:181-187.
  • [61]Cosio C, Dunand C: Specific functions of individual class III peroxidase genes. J Exp Bot 2009, 60:391-408.
  • [62]Rayko E, Jabbari K, Bernardi G: The evolution of introns in human duplicated genes. Gene 2006, 365:41-47.
  • [63]Welinder KG: Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Lett 1976, 72:19-23.
  • [64]Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A: Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 2012, 7:e39720.
  • [65]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [66]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinf 2009, 10:421. BioMed Central Full Text
  • [67]Shyamala V, Ferro-Luzzi Ames G: Genome walking by single-specific-primer. Gene 1989, 84:1-8.
  • [68]The European Molecular Biology Laboratory (EMBL) http://www.ebi.ac.uk/embl/ webcite
  • [69]Puigbò P, Bravo IG, Garcia-Vallve S: CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 2008, 3:38. BioMed Central Full Text
  • [70]CAIcal Server http://genomes.urv.es/CAIcal/ webcite
  • [71]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [72]Molecular Evolutionary Genetics Analysis (MEGA) software http://www.megasoftware.net/ webcite
  • [73]The Arabidopsis Information Resource (TAIR) http://www.arabidopsis.org/ webcite
  • [74]Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzym. 1996, 266:383-402.
  • [75]CLUSTALW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/ webcite
  • [76]ExPASy Compute pI/Mw tool http://web.expasy.org/compute_pi/ webcite
  • [77]Cheng J, Saigo H, Baldi P: Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching. Proteins 2006, 62:617-629.
  • [78]Lippi M, Passerini A, Punta M, Rost B, Frasconi P: MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics 2008, 24:2094-2095.
  • [79]Ensemble-based Disulfide Bonding Connectivity Pattern prediction server http://biomedical.ctust.edu.tw/edbcp/ webcite
  • [80]CLC bio: CLC Main Workbench 6.6.2 http://www.clcbio.com webcite
  • [81]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
  • [82]SignalP 3.0 Server http://www.cbs.dtu.dk/services/SignalP/ webcite
  • [83]Abad S, Kitz K, Hörmann A, Schreiner U, Hartner FS, Glieder A: Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J 2010, 5:413-420.
  • [84]Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques 2005, 38:44-48.
  • [85]Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A: Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res 2004, 5:179-189.
  • [86]Ryan BJ, O’Fágáin C: Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilisation effectiveness. BMC Biotechnol 2007, 7:86. BioMed Central Full Text
  • [87]Morawski B, Lin Z, Cirino P, Joo H, Bandara G, Arnold FH: Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Eng 2000, 13:377-384.
  文献评价指标  
  下载次数:20次 浏览次数:23次