期刊论文详细信息
BMC Microbiology
Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter
Suresh Korpole1  Annu Kumari1  Anil Kumar Pinnaka1  Shalley Sharma1  Santi M Mandal2 
[1] MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India;Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
关键词: MALDI and phylogenetic analysis;    Antimicrobial lipopeptide;    Enterobacter;    Citrobacter;   
Others  :  1143502
DOI  :  10.1186/1471-2180-13-152
 received in 2013-03-06, accepted in 2013-07-03,  发布年份 2013
PDF
【 摘 要 】

Background

Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample.

Results

The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides.

Conclusion

Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter.

【 授权许可】

   
2013 Mandal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329095442327.pdf 2658KB PDF download
Figure 4. 33KB Image download
Figure 3. 53KB Image download
Figure 2. 110KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Graveland H, Wagenaar JA, Heesterbeek H, Mevius D, van Duijkeren E, Heederik D: Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS ONE 2010, 5(6):e10990.
  • [2]Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P: Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 2010, 138(5):606-625.
  • [3]Gorman R, Adley CC: Characterization of Salmonella enterica serotype Typhimurium isolates from human, food, and animal sources in the Republic of Ireland. J Clin Microbiol 2004, 42(5):2314-2316.
  • [4]Hammerum AM, Heuer OE: Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 2009, 48(7):916-921.
  • [5]Vidovic S, Korber DR: Prevalence of Escherichia coli O157 in Saskatchewan cattle: characterization of isolates by using random amplified polymorphic DNA PCR, antibiotic resistance profiles, and pathogenicity determinants. Appl Environ Microbiol 2006, 72(6):4347-4355.
  • [6]Zhao S, White DG, Friedman SL, Glenn A, Blickenstaff K, Ayers SL, Abbott JW, Hall-Robinson E, McDermott PF: Antimicrobial resistance in Salmonella enteric serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Appl Environ Microbiol 2008, 74(21):6656-6662.
  • [7]de Graaf FK, Tieze GA, Wendelaar Bonga S, Stouthamer AH: Purification and genetic determination of bacteriocin production in Enterobacter cloacae. J Bacteriol 1968, 95(2):631-640.
  • [8]Jabrane A, Sabri A, Compere P, Jacques P, Vandenberghe I, Van Beeumen J, Thonart P: Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol 2002, 68(11):5704-5710.
  • [9]Shanks RMQ, Dashiff A, Alster JS, Kadouri DE: Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii. Arch Microbiol 2012, 194(7):575-587.
  • [10]Chiuchiolo MJ, Delgado MA, Farias RN, Salomon RA: Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 2001, 183(5):1755-1764.
  • [11]Parkinson M: Biosurfactants. Biotechnol Adv 1985, 3(1):65-83.
  • [12]Rodrigues L, Banat IM, Teixeira J, Oliveira R: Biosurfactants: potential applications in medicine. J Antimicrob Chemother 2006, 57(4):609-618.
  • [13]Nybroe O, Sørensen J: Production of cyclic lipopeptides by fluorescent pseudomonads. In Pseudomonas, Biosynthesis of Macromolecules and Molecular Metabolism. Edited by Ramos J-L. New York: Kluwer Academic/Plenum Publishers; 2004:147-172.
  • [14]Ongena M, Jacques P: Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 2008, 16(3):115-125.
  • [15]Bender CL, Scholz-Schroeder BK: New insights into the biosynthesis, mode of action and regulation of syringomycin, syringopeptin and coronatine. In Pseudomonas Vol2, Virulence and Gene Regulation Volume 2. Edited by Ramos J-L. New York: Kluwer Academic/Plenum Publishers; 2004:125-158.
  • [16]Gross H, Loper JE: Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009, 26(11):1408-1446.
  • [17]Delcambe L, Peypoux F, Besson F, Guinand M, Michel G: Structure of iturin-like substances. Biochem Soc Trans 1977, 5:1122-1124.
  • [18]Arima K, Kakinuma A, Tamura G: Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 1968, 31(3):488-494.
  • [19]Vanittanakom N, Loeffler W, Koch U, Jung G: Fengycin- a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 1986, 39(7):888-901.
  • [20]Hathout Y, Ho Y-P, Ryzhov V, Demirev P, Fenselau C: Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 2000, 63(11):1492-1496.
  • [21]Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S: Isolation and characterization of halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin and surfactin. Extremophiles 2002, 6(6):499-506.
  • [22]Duitman HE, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhard R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J: The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase and a fatty acid synthase. Proc Natl Acad Sci USA 1999, 96(23):13294-13299.
  • [23]Besson F, Michel G: Biosynthesis of iturin and surfactin by Bacillus subtilis: evidence for amino acid activating enzymes. Biotechnol Lett 1992, 14(11):1013-1018.
  • [24]Mandal SM, Barbosa AE, Franco OL: Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 2013. (In press), S0734-9750(13)00006-2.
  • [25]Abee T, Krockel L, Hill C: Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 1995, 28(2):169-185.
  • [26]Tally FP, De Bruin MF: Development of daptomycin for Gram-positive infections. J Antimicrob Chemother 2000, 46(4):523-526.
  • [27]Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S: Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express 2013, 3(1):2. BioMed Central Full Text
  • [28]Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M: Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010, 34(6):1037-1062.
  • [29]Raaijmakers JM, De Bruijn I, de Kock JD: Cyclic lipopeptide production by plant-associated Pseudomonas spp. diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 2006, 19(7):699-710.
  • [30]Jerala R: Synthetic lipopeptides: a novel class of antiinfectives. Expert Opin Investig Drugs 2007, 16(8):1159-1169.
  • [31]Makovitzki A, Avrahami D, Shai Y: Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 2006, 103(43):15997-16002.
  • [32]Price NPJ, Rooney AP, Swezey JL, Perry E, Cohan FM: Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 2007, 271(1):83-89.
  • [33]De Bruijn I, de Kock MJ, de Waard P, van Beek TA, Raaijmakers JM: Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 2008, 190(8):2777-2789.
  • [34]Dumenyo CK, Mukherjee A, Chun W, Chatterjee AK: Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur J Plant Pathol 1998, 104(6):569-582.
  • [35]Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S: Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 2003, 10(9):869-880.
  • [36]Sinnaeve D, Michaux C, Van Hemel J, Vandenkerckhove J, Peys E, Borremans FAM, Sas B, Wouters J, Martins JC: Structure and X-ray conformation of pseudodesmins A and B, two new cyclic lipodepsipeptides from Pseudomonas bacteria. Tetrahedron 2009, 65(21):4173-4181.
  • [37]Dubern JF, Lugtenberg BJ, Bloemberg GV: The ppulrsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 2006, 188(8):2898-2906.
  • [38]Swart MRP, van der Merwe MJ: Sequence specific stabilization of a linear analog of the antifungal lipopeptide iturin A2 by sodium during low energy electrospray ionization mass spectrometry conditions. J Am Soc Mass Spectrom 2001, 12(5):505-516.
  • [39]Hourdou ML, Besson F, Tenoux I, Michel G: Fatty acids and β-amino acid syntheses in strains of Bacillus subtilis producing iturinic antibiotics. Lipids 1989, 24(11):940-944.
  • [40]Pathak KV, Keharia H, Gupta K, Thankur SS, Balaram P: Lipopeptides from the Banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 2012, 23(10):1716-1728.
  • [41]Deleu M, Paquot M, Nylander T: Fengycin interaction with lipid monolayers at the air-aqueous interface implications for the effect of fengycin on biological membranes. J Colloid Interface Sci 2005, 283(2):358-365.
  • [42]Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M: All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 1990, 274(1–2):151-155.
  • [43]Suresh K, Mayilraj S, Chakrabarti T: Effluviibacter roseus gen. nov. sp. nov., isolated from muddy water, belonging to the family “Flexibacteraceae”. Int J Syst Evol Microbiol 2006, 56(7):1703-1707.
  • [44]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [45]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [46]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16(2):111-120.
  • [47]Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS: Matrix-assisted laser desorbtion ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 2002, 68(12):6210-6219.
  • [48]Singh PK, Chittpurna A, Sharma V, Patil PB, Suresh K: Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. Strain GI-9. PLoS ONE 2012, 7(3):e31498.
  文献评价指标  
  下载次数:37次 浏览次数:6次