期刊论文详细信息
BMC Genomics
De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes
Maren Wellenreuther1  Erik I Svensson1  Peter de Knijff2  Ken Kraaijeveld2  Bengt Hansson1  Pallavi Chauhan1 
[1]Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
[2]Department of Human and Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
关键词: Thermal adaptation;    Ommochrome and pteridine;    Melanin;    Opsin;    RNA-seq;    Transcriptome assembly;    Polymorphisms;    Zygoptera;    Odonata;   
Others  :  1139553
DOI  :  10.1186/1471-2164-15-808
 received in 2014-03-06, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group.

Results

Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as ‘complete’ in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders.

Conclusions

Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

【 授权许可】

   
2014 Chauhan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321205125457.pdf 2937KB PDF download
Figure 5. 157KB Image download
Figure 4. 44KB Image download
Figure 3. 186KB Image download
Figure 2. 146KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bybee S, Johnson KK, Gering E, Whiting M, Crandall K: All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Organisms Diversity & Evolution 2012, 12(3):241-250.
  • [2]Warrant E, Nilsson D-E: Invertebrate vision. Cambridge: Cambridge University Press; 2006.
  • [3]Corbet PS: Dragonflies: behavior and ecology of Odonata. Essex, UK: Harley Books; 1999.
  • [4]Samways MJ: Dragonflies as focal organisms in contemporary conservation biology. In Dragonflies and Damselflies. Edited by Córdoba-Aguilar A. Oxford: Oxford University Press; 2008.
  • [5]Wellenreuther M, Tynkkynen K, Svensson EI: Simulating range expansion: male species recognition and loss of premating isolation in damselflies. Evolution 2010, 64(1):242-252.
  • [6]Svensson E, Abbott J, Gosden T, Coreau A: Female polymorphisms, sexual conflict and limits to speciation processes in animals. Evol Ecol 2009, 23:93-108.
  • [7]Svensson EI, Waller JT: Ecology and Sexual Selection: Evolution of Wing Pigmentation in Calopterygid Damselflies in Relation to Latitude, Sexual Dimorphism, and Speciation. Am Nat 2013, 182(5):E174-E195.
  • [8]Bybee SM, Ogden TH, Branham MA, Whiting MF: Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics 2008, 34(4):477-514.
  • [9]Shanku AG, McPeek MA, Kern AD: Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome. G3 2013, 3(4):763-770.
  • [10]Andrés JA, Cordero A: The inheritance of female colour morphs in the damselfly Ceriagrion tenellum (Odonata, Coenagrionidae). Heredity 1999, 82(3):328-335.
  • [11]Gosden T, Svensson E: Density-dependent male mating harassment, female resistance, and male mimicry. Am Nat 2009, 173:709-721.
  • [12]Sánchez-Guillén RA, Hammers M, Hansson B, Gossum HV, Cordero-Rivera A, Mendoza DIG, Wellenreuther M: Ontogenetic shifts in male mating preference and morph-specific polyandry in a female colour polymorphic insect. BMC Evol Biol 2013, 13(116):1-11.
  • [13]Svensson EI, Abbott J, Hardling R: Female polymorphism, frequency dependence, and rapid evolutionary dynamics in natural populations. Am Nat 2005, 165:567-576.
  • [14]Miller PL: Sperm competition in Ischnura elegans (Vander Linden) (Zygoptera: Coenagrionidae). Odonatologica 1987, 16:201-207.
  • [15]Cooper G, Miller PL, Holland PWH: Molecular genetic analysis of sperm competition in the damselfly Ischnura elegans (Vander Linden). Proc R Soc Ser B 1996, 263:1343-1349.
  • [16]Sánchez-Guillén RA, Córdoba-Aguilar A, Cordero-Rivera AS, Wellenreuther M: Genetic divergence predicts reproductive isolation in damselflies. J Evol Biol 2013, 7(1):76-87.
  • [17]Sánchez-Guillén RA, Wellenreuther M, Cordero-Rivera AS: Strong asymmetry in the relative strengths of prezygotic and postzygotic barriers between two damselfly sister species. Evolution 2012, 66(3):690-707.
  • [18]Paulson D: Dragonflies and damselflies of the West. Princeton University Press: Princeton; 2009.
  • [19]Fincke MO, Jödicke R, Paulson DR, Schultz TD: The evolution and frequency of female color morphs in Holarctic Odonata: why are male-like females typically the minority? Int J Odonatol 2005, 8(2):183-212.
  • [20]Cordero A: The inheritance of female polymorphism in the damselfly Ischnura graellsii (Rambur) (Odonata: Coenagrionidae). Heredity 1990, 64:341-346.
  • [21]Sánchez-Guillén RA, Gossum HV, Rivera AC: Hybridization and the inheritance of female colour polymorphism in two ischnurid damselflies (Odonata: Coenagrionidae). Biol J Linn Soc 2005, 85(4):471-481.
  • [22]Gossum HV, Bots J, Heusden JV, Hammers M, Huyghe K, Morehouse NI: Reflectance spectra and mating patterns support intraspecific mimicry in the colour polymorphic damselflyIschnura elegans. Evol Ecol 2011, 25(1):139-154.
  • [23]Askew RR: The dragonflies of Europe. Colchester, UK: B H & A Harley Ltd; 2004.
  • [24]Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B: Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly. PLoS One 2011, 6(6):e20440.
  • [25]Ladona fulva RNA sequence data download website. ftp://ftp.hgsc.bcm.edu/I5K-pilot/Scarce_Chaser/RNA_sequence/ webcite
  • [26]Enallagma hageni RNA sequence data download website. ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR649/SRR649536 webcite
  • [27]Drosophila melanogaster transcriptome data download website.. ftp://ftp.ensembl.org/pub/release-75/fasta/drosophila_melanogaster/cdna/ webcite
  • [28]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols 2013, 8(8):1494-1512.
  • [29]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [30]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192.
  • [31]Pallavicini A, Canapa A, Barucca M, Alfoldi J, Biscotti M, Buonocore F, De Moro G, Di Palma F, Fausto A, Forconi M, Gerdol M, Makapedua DM, Turner-Meier J, Olmo E, Scapigliati G: Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics 2013, 14(1):538. BioMed Central Full Text
  • [32]Liu S, Zhang Y, Zhou Z, Waldbieser G, Sun F, Lu J, Zhang J, Jiang Y, Zhang H, Wang X, Rajendran KV, Khoo L, Kucuktas H, Peatman E, Liu Z: Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. BMC Genomics 2012, 13:595. BioMed Central Full Text
  • [33]Miller H, Biggs P, Voelckel C, Nelson N: De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus). BMC Genomics 2012, 13(1):439. BioMed Central Full Text
  • [34]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [35]RepeatMasker Open-3.0. http://www.repeatmasker.org/ webcite
  • [36]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23(9):1061-1067.
  • [37]Min XJ, Butler G, Storms R, Tsang A: TargetIdentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res 2005, 33(suppl 2):W669-W672.
  • [38]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [39]Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK: Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 2012, 57:449-468.
  • [40]Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, Haeseler AV, Burmester T, Hadrys H, Wägele JW, Misof B: A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 2010, 27(11):2451-2464.
  • [41]Li B, Dewey C: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12(1):323. BioMed Central Full Text
  • [42]Altincicek B, Vilcinskas A: Identification of immune-related genes from an apterygote insect, the firebrat Thermobia domestica. Insect Biochem Mol Biol 2007, 37(7):726-731.
  • [43]Pomes A, Chapman MD, Vailes LD, Blundell TL, Dhanaraj V: Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Am J Respir Crit Care Med 2002, 165(3):391-397.
  • [44]Bluthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D: Biological profiling of gene groups utilizing Gene Ontology. Genome Inform 2005, 16:106-115.
  • [45]Meinertzhagen IA, Menzel R, Kahle G: The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum. J Comp Physiol 1983, 151(3):295-310.
  • [46]Wittkopp PJ, Carroll SB, Kopp A: Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 2003, 19(9):495-504.
  • [47]Wittkopp PJ, Beldade P: Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 2009, 20(1):65-71.
  • [48]True JR: Insect melanism: the molecules matter. Trends Ecol Evol (Personal Edition) 2003, 18(12):640-647.
  • [49]Siva-Jothy MT: A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc R Soc Lond B Biol Sci 2000, 267(1461):2523-2527.
  • [50]Svensson EI, Eroukhmanoff F, Karlsson K, Runemark A, Brodin A: A role for learning in population divergence of mate preferences. Evolution 2010, 64(11):3101-3113.
  • [51]Neckameyer WS: Dopamine and mushroom bodies in Drosophila: experience-dependent and -independent aspects of sexual behavior. Learn Mem 1998, 5(1–2):157-165.
  • [52]Neckameyer WS: Dopamine modulates female sexual receptivity in Drosophila melanogaster. J Neurogenet 1998, 12(2):101-114.
  • [53]Wicker-Thomas C, Hamann M: Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster. J Insect Physiol 2008, 54(10–11):1423-1431.
  • [54]Liu T, Dartevelle L, Yuan C, Wei H, Wang Y, Ferveur JF, Guo A: Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci 2008, 28(21):5539-5546.
  • [55]Keleman K, Vrontou E, Kruttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ: Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 2012, 489(7414):145-149.
  • [56]Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J: Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 2002, 368(Pt 1):333-340.
  • [57]Wright TRF, Bewley GC, Sherald AF: The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa-decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive mutants. Genetics 1976, 84(2):287-310.
  • [58]Yu H-S, Shen Y-H, Yuan G-X, Hu Y-G, Xu H-E, Xiang Z-H, Zhang Z: Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol Biol Evol 2011, 28(6):1785-1799.
  • [59]Asano T, Takebuchi K: Identification of the gene encoding pro-phenoloxidase A(3) in the fruitfly, Drosophila melanogaster. Insect Mol Biol 2009, 18(2):223-232.
  • [60]Asada N, Yokoyama G, Kawamoto N, Norioka S, Hatta T: Prophenol oxidase A3 in Drosophila melanogaster: activation and the PCR-based cDNA sequence. Biochem Genet 2003, 41(5–6):151-163.
  • [61]Reed RD, Nagy LM: Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev 2005, 7(4):301-311.
  • [62]Yamamoto M, Howells AJ, Ryall RL: The ommochrome biosynthetic pathway in Drosophila melanogaster: the head particulate phenoxazinone synthase and the developmental onset of xanthommatin synthesis. Biochem Genet 1976, 14(11–12):1077-1090.
  • [63]Osanai-Futahashi M, Tatematsu K-i, Yamamoto K, Narukawa J, Uchino K, Kayukawa T, Shinoda T, Banno Y, Tamura T, Sezutsu H: Identification of the Bombyx Red Egg Gene Reveals Involvement of a Novel Transporter Family Gene in Late Steps of the Insect Ommochrome Biosynthesis Pathway. J Biol Chem 2012, 287(21):17706-17714.
  • [64]Pao SS, Paulsen IT, Saier MH Jr: Major facilitator superfamily. Microbiol Mol Biol Rev 1998, 62(1):1-34.
  • [65]Braasch I, Schartl M, Volff JN: Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 2007, 7:74. BioMed Central Full Text
  • [66]Meng Y, Katsuma S, Daimon T, Banno Y, Uchino K, Sezutsu H, Tamura T, Mita K, Shimada T: The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. J Biol Chem 2009, 284(17):11698-11705.
  • [67]Ziegler I: The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. Pigment Cell Res 2003, 16(3):172-182.
  • [68]Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B: Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate. PLoS One 2012, 7(6):e34682.
  • [69]Bickel RD, Kopp A, Nuzhdin SV: Composite Effects of Polymorphisms near Multiple Regulatory Elements Create a Major-Effect QTL. PLoS Genet 2011, 7(1):e1001275.
  • [70]Rebora M, Salerno G, Piersanti S, Dell’otto A, Gaino E: Olfaction in dragonflies: electrophysiological evidence. J Insect Physiol 2012, 58(2):270-277.
  • [71]Piersanti S, Frati F, Conti E, Gaino E, Rebora M, Salerno G: First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol 2014, 62:26-31.
  • [72]Hallem EA, Dahanukar A, Carlson JR: Insect odor and taste receptors. Annu Rev Entomol 2006, 51:113-135.
  • [73]May ML: Thermoregulation and Adaptation to Temperature in Dragonflies (Odonata: Anisoptera). Ecol Monogr 1976, 46(1):1-32.
  • [74]May ML: Thermoregulation and Reproductive Activity in Tropical Dragonflies of the Genus Micrathyria. Ecology 1977, 58(4):787-798.
  • [75]May ML: Energy-Metabolism of Dragonflies (Odonata, Anisoptera) at Rest and During Endothermic Warm-Up. J Exp Biol 1979, 83:79-94.
  • [76]Robinson MD, McCarthy DJ, Smyth GK: Edger: a bioconducter package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [77]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Meth 2012, 9(4):357-359.
  • [78]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [79]Lampa S, Dahlo M, Olason P, Hagberg J, Spjuth O: Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data. Giga Sci 2013, 2(1):9. BioMed Central Full Text
  文献评价指标  
  下载次数:26次 浏览次数:25次