期刊论文详细信息
BMC Developmental Biology
Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl
David L Stocum1  Xiaoping Chen3  Bingbing Li4  Jo Ann Cameron6  Mathew J Palakal5  Teri L Belecky-Adams1  Nathaniel M Price3  Derek J Milner6  Mu Wang2  Deepali Jhamb8  Fengyu Song7  Nandini Rao9 
[1] Department of Biology, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA;Department of Biochemistry and Molecular Biology, School of Medicine, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA;Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA;Department of Chemistry, Central Michigan University, Mt. Pleasant, MI, USA;School of Informatics and Computing, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University, Indianapolis, IN, USA;Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA;Department of Oral Biology, School of Dentistry and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA;School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA;Department of Biochemistry and Genetics, School of Medicine, American University of Antigua, Coolidge, Antigua, West Indies
关键词: Comparison to axolotl;    Fibroblastema formation;    Proteomic analysis;    Xenopus hindlimb;    Regeneration;   
Others  :  1084931
DOI  :  10.1186/1471-213X-14-32
 received in 2014-04-21, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb.

Results

Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema.

Conclusions

We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.

【 授权许可】

   
2014 Rao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113165435278.pdf 1660KB PDF download
Figure 3. 100KB Image download
Figure 2. 103KB Image download
Figure 1. 168KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Stocum DL, Cameron JA: Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 2011, 240:943-968.
  • [2]Nacu E, Tanaka EM: Limb regeneration: a new development? Ann Rev Cell Dev Biol 2011, 27:409-440.
  • [3]Seifert AW, Monaghan JR, Smith MD, Pasch B, Stier AC, Michonneau F, Maden M: The influence of fundamental traits on mechanisms controlling appendage regeneration. Biol Rev 2011, 87:330-345.
  • [4]Globus M, Vethamany-Globus S, Lee YCI: Effect of apical epidermal cap on mitotic cycle and cartilage differentiation in regeneration blastemata in the newt, Notophthalmus viridescens. Dev Biol 1980, 75:358-372.
  • [5]Endo T, Bryant SV, Gardiner DM: A stepwise model system for limb regeneration. Dev Biol 2004, 270:135-145.
  • [6]Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP: Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007, 318:772-777.
  • [7]Brockes JP, Kumar A: Comparative aspects of animal regeneration. Ann Rev Cell Dev Biol 2008, 24:525-549.
  • [8]Stocum DL: The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci 2011, 34:908-916.
  • [9]Monaghan JR, Athippozhy A, Seifert AW, Putta S, Stromberg AJ, Maden M, Gardiner DM, Voss SR: Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biology Open 2012, 1:937-948. doi:10.1242/bio.20121594
  • [10]Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM: Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 2013, 8:e61352.
  • [11]Stewart R, Rascon CA, Tian S, Nie J, Barry C, Chu L-F, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN: Comparative RNA-seq analysis in the unsequenced axolotl: The oncogene burst highlights early gene expression in the blastema. PLOS Computat Biol 2013, 9(3):e1002936. doi:10.1371/journal.pcbi.1002936
  • [12]Nieuwkoop PD, Faber J (Eds): Normal table of Xenopus laevis (Daudin): A systematicall and chronological survey of the development from the fertilized egg till the end of metamorphosis. Amsterdam: North-Holland Pub Co; 1956.
  • [13]Dent JN: Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morph 1962, 110:61-77.
  • [14]Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K: Limb regeneration in Xenopus laevis froglet. TSW Develop Embryol 2006, 1(S1):26-37.
  • [15]Kawasuki A, Sagawa N, Hayashi S, Yokoyama H, Tamura K: Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Topics Microbio Immunol 2013, 367:33-74.
  • [16]Wolfe AD, Nye HL, Cameron JA: Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs. Dev Dyn 2000, 218:681-697.
  • [17]Sessions SK, Bryant SV: Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus. J Exp Zool 1988, 247:39-44.
  • [18]Filoni S, Velloso CP, Bernardini S, Cannata SM: Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larval Xenopus laevis: the role of limb innervation and that of limb differentiation. J Exp Zool 1995, 1995(273):327-341.
  • [19]Skowron SK, Komala Z: Limb regeneration in postmetamorphic Xenopus laevis. Folia Biol Krakow 1957, 5:53-72.
  • [20]Khan PA, Liversage RA: Ultrastructural comparison between regenerating and developing hindlimbs of Xenopus laevis tadpoles. Growth Develop Aging 1990, 54:173-181.
  • [21]Goss RJ, Holt R: Epimorphic vs. tissue regeneration in Xenopus forelimbs. J Exp Zool 1992, 261:451-457.
  • [22]Suzuki M, Satoh A, Ide H, Tamura K: Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Dev Biol 2005, 286:361-375.
  • [23]Suzuki M, Satoh A, Ide H, Tamura K: Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Dev Biol 2007, 2007(304):675-686.
  • [24]Satoh A, James MA, Gardiner DM: The role of nerve signaling in limb genesis and agenesis during axolotl limb regeneration. J Bone Joint Surg 2009, 91(S4):90-98.
  • [25]Furlong ST, Heidemann MK, Bromley SC: Fine structure of the forelimb regenerate of the African clawed toad, Xenopus laevis. Anat Rec 1985, 1985(211):444-449.
  • [26]Komala Z: Poro´ wnawcze badania nad przebiegiem ontogenezy I regen eracji konczynkon´czyn kijanek Xenopus laevis w ro´ znychro´ znych okresach rozwojowych. Folia Biol Krakow 1957, 5:1-52.
  • [27]Korneluk RG, Liversage RA: Effects of radius–ulna removal on forelimb regeneration in Xenopus laevis froglets. J Embryol Exp Morph 1984, 82:9-24.
  • [28]Harty M, Neff AW, King MW, Mescher AL: Regeneration or scarring: an immunologic perspective. Devel Dynam 2003, 226:268-279.
  • [29]Mescher AL, Neff AW: Regenerative capacity and the developing immune system. Adv in Biochem Eng/Biotechnol 2005, 93:39-66.
  • [30]Mescher AL, Neff AW: Limb regeneration in amphibians: immunological considerations. TheScientificWorldJOURNAL 2006, 6(Suppl 1):1-11.
  • [31]Endo T, Tamura K, Ide H: Analysis of gene expressions during Xenopus forelimb regeneration. Dev Biol 2000, 220:296-306.
  • [32]King MW, Nguyen T, Calley J, Harty MW, Muzinich MC, Mescher AL, Chalfant C, N'Cho M, McLeaster K, McEntire J, Stocum D, Smith RC, Neff AW: Identification of genes expressed during Xenopus laevis limb regeneration by using subtractive hybridization. Develop Dyn 2003, 226:398-409.
  • [33]Grow M, Neff AW, Mescher AL, King MW: Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn 2006, 235:2667-2685.
  • [34]Pearl EJ, Barker R, Day RC, Beck CW: Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC Dev Biol 2008, 8:66.
  • [35]Ohgo S, Itoh A, Suzuki M, Satoh A, Yokoyama H, Tamura K: Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus. Dev Biol 2010, 338:148-157.
  • [36]Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, Ide H, Tamura K: Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 2007, 312:171-182.
  • [37]Bodemer CW, Everett NB: Localization of newly synthesized proteins in regenerating newt limbs as determined by radioautographic localization of injected methionine-S35. Dev Biol 1959, 1959(1):327-342.
  • [38]Lebowitz P, Singer M: Neurotrophic control of protein synthesis in the regenerating limb of the newt Triturus. Nature 1970, 225:824-827.
  • [39]Singer M, Ilan J: Nerve-dependent regulation of absolute rates of protein synthesis in newt limb regenerates: measurement of methionine specific activity in peptidyl-tRNA of the growing polypeptide chain. Dev Biol 1977, 57:174-187.
  • [40]Dearlove GE, Stocum DL: Denervation-induced changes in soluble protein content during forelimb regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 1974, 190:317-328.
  • [41]Slack JM: Protein synthesis during limb regeneration in the axolotl. J Embryol Exp Morph 1982, 70:241-260.
  • [42]Tsonis PA, Mescher A, Del Rio-Tsonis K: Protein synthesis in the newt regenerating limb. Biochem 1992, 1992(281):665-668.
  • [43]Tsonis PA: A comparative two-dimensional gel protein database of the ntact and regenerating newt limbs. Electrophoresis 1993, 14(1–2):148-156.
  • [44]King MW, Neff AW, Mescher AL: Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration. Int J Dev Biol 2009, 53:955-969.
  • [45]Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HL, Cameron JA, Stocum DL: Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 2009, 7:83.
  • [46]Jhamb D, Rao N, Milner DJ, Song F, Cameron JA, Stocum DL, Palakal MJ: Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinformatics 2011, 12:80.
  • [47]Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP: Molecular Cell Biology. New York: W.H. Freeman; 2012:1149.
  • [48]Martelly I: Calcium thresholds in the activation of DNA and RNA synthesis in cultured planarian cells: relationship with hormonal and DB cAMP effects. Cell Diff 1984, 15:25-36.
  • [49]Jenkins LS, Duerstock BS, Borgens RB: Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Dev Biol 1996, 178:251-262.
  • [50]Adams DS, Masi A, Levin M: H + pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 2007, 134:1323-1335.
  • [51]Tsonis PA, English D, Mescher AL: Increased content of inositol phosphates in amputated limbs of axolotl larvae, and the effect of beryllium. J Exp Zool 1991, 259:252-258.
  • [52]Thornton CS: Amphibian limb regeneration. Adv in Morphogenesis 1968, 7:205-249.
  • [53]Lizarbe MA, Barrasa JI, Olmo N, Gavilanes F, Turnay J: Annexin-phospholipid interactions: functional implications. Int J Mol Sci 2013, 14:2652-2683.
  • [54]Oudhkir M, Martelly I, Castagna M, Moraczewski J, Boilly B: Protein kinase C activity during limb regeneration of amphibians. In Recent Trends in Regeneration Research. Edited by Kiortsis V, Koussoulakos S, Wallace H. New York: Plenum Press; 1989:69-79.
  • [55]Menaa C, Devlin RD, Reddy SV, Gazitt Y, Choi SJ, Roodman GD: Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Investig 1999, 103:1605-1613.
  • [56]Singer M, Salpeter MM: The bodies of Eberth and associated structures in the skin of the frog tadpole. J Exp Zool 1961, 147:1-19.
  • [57]Caldwell RL, Caprioli RM: Tissue profiling by mass spectrometry: a review of methodology and applications. Mol & Cell Proteomics 2005, 4:394-401.
  • [58]Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB: Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Rep Reg 2008, 16:442-449.
  • [59]Lowenstein CJ, Snyder SH: Nitric oxide, a novel biologic messenger. Cell 1992, 70:705-707.
  • [60]Maden M: Retinoic acid and its receptors in limb regeneration. Sem Cell Dev Biol 1997, 8:445-453.
  • [61]Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ: Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 2005, 279:86-98.
  • [62]Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F: Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2011, 240:1127-1141.
  • [63]Mount JG, Muzylak M, Allen S, Althnaian T, McGonnell IM, Price JS: Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 2006, 235:1390-1399.
  • [64]Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT: Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134:479-489.
  • [65]Ghosh S, Roy S, Seguin C, Bryant SV, Gardiner DM: Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Dev Growth Diff 2008, 50:289-297.
  • [66]Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT: Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 2007, 306:170-178.
  • [67]Yokoyama H, Maruoka T, Ochi H, Aruga A, Ohgo S, Ogino H, Tamura K: Different requirement for Wnt/beta-catenin signaling in limb regeneration of larval and adult Xenopus. PLoS One 2011, 6:e21721.
  • [68]Kestler HA, Kuhl M: From individual Wnt pathways towards a Wnt signalling network. Phil Transact Royal Soc London Series B, Biol Sci 2008, 363:1333-1347.
  • [69]Flanagan JG, Vanderhaeghen P: The ephrins and Eph receptors in neural development. Ann Rev Neurosci 1998, 21:309-345.
  • [70]Wilkinson DG: Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2001, 2:155-164.
  • [71]Filoni S, Velloso CP, Bernardini A, Cannata SM: Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larval Xenopus laevis: the role of limb innervation and that of limbv differentiation. J Exp Zool 1995, 273:327-341.
  • [72]Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM: The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 1999, 397:707-710.
  • [73]Carlson BM: Inhibition of limb regeneration in the axolotl after treatment of the skin with actinomycin D. Anat Rec 1969, 163:389-401.
  • [74]Crews L, Gates PB, Brown R, Joliot A, Foley C, Brockes JP, Gann AA: Expression and activity of the newt Msx-1 gene in relation to limb regeneration. Proc Royal Soc (Biological Sciences) 1995, 259:161-171.
  • [75]Cadinouche MZ, Liversage RA, Muller W, Tsilfidis C: Molecular cloning of the Notophthalmus viridescens radical fringe cDNA and characterization of its expression during forelimb development and adult forelimb regeneration. Develop Dyn 1999, 214:259-268.
  • [76]Shimizu-Nishikawa K, Tsuji S, Yoshizato K: Identification and characterization of newt rad (ras associated with diabetes), a gene specifically expressed in regenerating limb muscle. Dev Dyn 2001, 20:74-86.
  • [77]Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM: Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 1996, 122:3487-3497.
  • [78]Satoh A, Graham GMC, Bryant SV, Gardiner DM: Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 2008, 319:321-335.
  • [79]Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, Kathiriya IS, Mo R, Hui CC, Srivastava D, Bruneau BG: Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet 2006, 38:175-183.
  • [80]Zhu W, Kuo D, Nathanson J, Satoh A, Pao GM, Yeo GW, Bryant SV, Voss SR, Gardiner DM, Hunter T: Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Diff 2012, 54:673-685.
  • [81]Zhu W, Pao GM, Satoh A, Cummings G, Monaghan JR, Harkins TT, Bryant SV, Voss SR, Gardiner DM, Hunter T: Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Dev Biol 2012, 370:42-51.
  • [82]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861-872.
  • [83]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
  • [84]Yamanaka S: Induced pluripotent stem cells: past, present and future. Cell Stem Cell 2012, 10:678-684.
  • [85]Maki N, Suetsugu-Maki R, Sano S, Nakamura K, Nishimura O, Tarui H, Del Rio-Tsonis K, Ohsumi K, Agata K, Tsonis PA: Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 2010, 24:3462-3467.
  • [86]Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA: Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 2009, 238:1613-1616.
  • [87]Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, Chatfield J, Chen Y-H, Sottile V, Voss SR, Alberio R, Johnson AD: Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development 2010, 137:2973-2980.
  • [88]Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM: Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009, 460:60-65.
  • [89]Christen B, Robles V, Raya M, Paramonov I, Izpisua -Belmonte JC: Regeneration and reprogramming compared. BMC Biol 2010, 8:5.
  • [90]Neff AW, King MW, Harty MW, Nguyen T, Calley J, Smith RC, Mescher AL: Expression of Xenopus XlSALL4 during limb development and regeneration. Dev Dyn 2005, 233:356-367.
  • [91]Neff AW, King MW, Mescher AL: Dediffeentiation and the sole of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 2011, 240:979-989.
  • [92]Tzchori I, Day TF, Carolan PJ, Zhao Y, Wassif CA, Li LQ, Lewandowski M, Gorivodsky M, Love PE, Porter FD, Westphal H, Yang Y: LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development 2009, 136:1375-1385.
  • [93]Lin Y, Martin J, Gruendler C, Farley J, Meng X, Li BY, Lechleider R, Huff C, Kim RH, Grasser WA, Paralkar V, Wang T: A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 2002, 3:15.
  • [94]Guimond JC, Levesque M, Michaud PL, Berdugo J, Finnson K, Philip A, Roy S: BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Dev Biol 2010, 10:15.
  • [95]Wilson JM, Martinez-De Luna RI, El Hodiri HM, Smith R, King MW, Mescher AL, Neff AW, Belecky-Adams TL: RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Express Patt 2010, 10:44-52.
  • [96]Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004, 432:466-472.
  • [97]Lin G, Chen Y, Slack JMW: Imparting regenerative capacity to limbs by progenitor cell transplantation. Dev Cell 2013, 24:41-51.
  • [98]Hay E: Electron microscope observations of muscle dedifferentiation in regeneration of Amblystoma limbs. Dev Biol 1959, 1:555-585.
  • [99]Mescher AL: The cellular basis of limb regeneration in urodeles. Int J Dev Biol 1996, 40:785-795.
  • [100]Kumar A, Brockes JP: Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 2002, 99(3):566-574.
  • [101]Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roench K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A: Fundamental differences in dedifferentiation and stem cell recruitmant during skeletal muscle regeneration in two salamander species. Cell Stem Cell 2014, 14:1-14.
  • [102]Satoh A, Suzuki M, Amano T, Tamura K, Ide H: Joint development in Xenopus laevis and induction of segmentations in regenerating froglet limb (spike). Dev Dyn 2005, 233:1444-1453.
  • [103]Shyh-Chang N, Zhu H, Yvanka de Soysa T, Shinods G, Seligson MT, Tsanov KM, Nguyen L, Asara JM, Cantley LC, Faley GQ: Lin 28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013, 155:778-792.
  • [104]Gorsic M, Majdic G, Komel R: Identification of differentially expressed genes in 4-day axolotl limb blastema by suppression subtractive hybridization. J Physiol Biochem 2008, 64:37-50.
  • [105]Needham AE: Regeneration and Wound Healing. London, UK: Methuen & Co; 1952.
  • [106]Schmidt AJ: The Molecular Basis of Regeneration: Enzymes. Urbana, IL, USA: University of Illinois Press; 1966.
  • [107]Schmidt AJ: Cellular Biology of Vertebrate Regeneration and Repair. Chicago, IL, USA: University of Chicago Press; 1968.
  • [108]Reid MB: Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998, 162:401-409.
  • [109]Maden M: Retinoids and the control of pattern in limb development and regeneration. Trends in Genet 1985, 1:103-107.
  • [110]Maden M, Hind M: Retinoic acid, a regeneration-inducing molecule. Dev Dyn 2003, 226:237-244.
  • [111]McEwen J, Lynch J, Beck CW: Expression of key retnoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Dev Dynam 2011, 240:1259-1270.
  • [112]Mescher AL, Connell E, Hsu C, Patel C, Overton B: Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Dev Growth Diff 1977, 39:677-684.
  • [113]Cannata SM, Bernardini S, Filoni S: Regenerative responses in cultured hindlimb stumps of larval Xenopus laevis. J Exp Zool 1992, 262:446-453.
  • [114]Yokoyama H: Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Diff 2008, 50:13-22.
  • [115]Godwin JW, Pito R, Rosenthal NA: Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 2013, 110:9415-9420.
  • [116]Peadon AM, Singer M: The blood vessels of the regenerating limb of the adult newt, Triturus. J Morph 1966, 118:79-89.
  • [117]Kim JW, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005, 30:142-150.
  • [118]Funasaka T, Yanagawa T, Hogan V, Raz A: Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J 2005, 19:1422-1430.
  • [119]Mylotte LA, Duffy AM, Murphy M, O'Brien T, Samali A, Barry F, Szegezdi E: Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 2008, 26:1325-1336.
  • [120]Solorzano L, Rieber MS, Medina JD, Rieber M: Decreased glycolytic metabolism accelerates apoptosis in response to 2-acetyl furanonaphthoquinone in K1735 melanoma irrespective of bcl-2 overexpression. Cancer Biol Ther 2005, 4:329-335.
  • [121]Mescher AL, White GW, Brokaw JJ: Apoptosis in regenerating and denervated, nonregenerating urodele forelimbs. Wound Rep Reg 2000, 8:110-116.
  • [122]Atkinson DL, Stevenson TJ, Park EJ, Riedy MD, Milash B, Odelberg SJ: Cellular electroporation induces dedifferentiation in intact newt limbs. Dev Biol 2006, 299:257-271.
  • [123]Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M: Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 2007, 301:62-69.
  • [124]Sirbulescu RF, Zupanc GK: Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neurosci 2010, 171:599-612.
  • [125]Kaufman RJ: Orchestrating the unfolded protein response in health and disease. J Clin Investig 2002, 110:1389-1398.
  • [126]Ellgaard L, Helenius A: Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003, 4:181-191.
  • [127]Levesque M, Gatien S, Finnson K, Desmeules S, Villiard E, Pilote M, Philip A, Roy S: Transforming growth factor:β signaling is essential for limb regeneration in axolotls. PLoS One 2007, 2(11):e1277.
  • [128]Vethamany-Globus S: Hormone action in newt limb regeneration: insulin and endorphins. Biochem Cell Biol 1987, 65:730-738.
  • [129]Vethamany-Globus S: Immunohistochemical localization of beta-endorphin-like material in the urodele and anuran amphibian tissues. Gen Comp Endocrinol 1989, 75:271-279.
  • [130]Vethamany-Globus S, Globus M, Milton G: Beta-endorphins (beta-EP) in amphibians: higher beta-EP levels during regenerating stages of anuran life cycle and immunocytochemical localization of beta-EP in regeneration blastemata. J Exp Zool 1984, 232:259-267.
  • [131]Villiard E, Brinkman H, Moiseeva O, Malette FA, Ferbeyre G, Roy S: Urodele p53 tolerates mino acid changes found in p53 variants linked to human cancer. BMC Evol Biol 2007, 7:180.
  • [132]Yun MH, Gates PB, Brockes JP: Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci U S A 2013, 110:17392-17397.
  • [133]Kelly DJ, Tassava RA: Cell division and ribonucleic acid synthesis during the initiation of limb regeneration in larval axolotls (Ambystoma mexicanum). J Exp Zool 1973, 185:45-54.
  • [134]Abdel-Karim AE, Michael MI, Anton HJ: Mitotic activity in the blastema and stump tissues of regenerating hind limbs of Xenopus laevis larvae after amputation at ankle level: an autoradiographic study. Folia Morphol (Warsz) 1990, 38:1-11.
  • [135]Eldridge AG, Loktev AV, Hansen DV, Verschuren EW, Reimann JD, Jackson PK: The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 2006, 124:367-380.
  • [136]Lian I, Kim J, Okazawa H, Zhao J, Yu J, Chinnaiyan A, Israel MA, Goldstein LSB, Abujourar R, Ding S, Guan K-L: The role of YAP transcription coactivator in reguating stem cell self-renewal and differentiation. Genes Dev 2010, 24:1106-1118.
  • [137]Zhao B, Tumaneng K, Guan KL: The Hippo pathway in organ size control, tissue regeneration and stem cell self-rennewal. Nat Cell Biol 2011, 13:877-883.
  • [138]Westlake CJ, Junutula JR, Simon GC, Pilli M, Prekeris R, Scheller RH, Jackson PK, Eldridge AG: Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene. Proc Natl Acad Sci U S A 2007, 104:1236-1241.
  • [139]Dabbeekeh JT, Faitar SL, Dufresne CP, Cowell JK: The EVI5 TBC domain provides the GTPase-activating protein motif for RAB11. Oncogene 2007, 26:2804-2808.
  • [140]Faitar SL, Sossey-Alaoui K, Ranalli TA, Cowell JK: EVI5 protein associates with the INCENP-aurora B kinase-survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp Cell Res 2006, 312:2325-2335.
  • [141]Bernis C, Vigneron S, Burgess A, Labbe J-C, Fesquet D, Castro A, Lorca T: Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCFβtrcp. EMBO Rep 2007, 8:91-98.
  • [142]Heber-Katz E, Zhang Y, Bedelbaeva K, Song F, Chen X, Stocum DL: Cell cycle regulation and regeneration. Curr Topics Microbio Immunol 2013, 367:253-276.
  • [143]Mescher AL, Tassava RA: Denervation effects on DNA replication and mitosis during the initiation of limb regeneration in adult newts. Dev Biol 1975, 44:187-197.
  • [144]Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD: A simplified procedure for the resuction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Analyt Biochem 2004, 333:174-181.
  • [145]Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE: Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 2005, 4:1442-1450.
  • [146]Fitzpatrick DP, You JS, Bemis KG, Wery JP, Ludwig JR, Wang M: Searching for potential biomarkers of cisplatin resistance in human ovarian cancer using a label-free LC/MS-based protein quantification method. Proteomics Clin Appl 2007, 1:246-263.
  • [147]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [148]https://www.google.com/?gws_rd=ssl#q=http://blast.ncbi.nim.nih.gov/blast.cgi
  • [149]GeneCards http://www.genecards.org webcite
  • [150]UniProt http://www.uniprot.org/ webcite
  • [151]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterna. Proc Natl Acad Aci USA 1998, 95:14863-14868.
  • [152]Saldanha AJ: Java Treeview-extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.
  • [153]Krzywinski M, Schein JE, Birol I, Connors J, Gascoyne R, Horman D, Jones SJ, Mara MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  文献评价指标  
  下载次数:35次 浏览次数:16次