| BMC Research Notes | |
| Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life | |
| Tine R Licht2  Hanne Frøkiær1  Lisbeth N Fink3  Stine B Metzdorff1  Martin I Bahl2  Matilde B Kristensen2  Anders Bergström2  | |
| [1] Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark;Gut Ecology Group, Department of Food Microbiology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, Søborg, 2860, Denmark;Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark | |
| 关键词: 16S rRNA; Escherichia coli Nissle; Lactobacillus acidophilus NCFM; Probiotics; Postnatal transcription onset; LinRegPCR; qPCR; Monocolonized; Germ free mice; | |
| Others : 1166017 DOI : 10.1186/1756-0500-5-402 |
|
| received in 2011-11-16, accepted in 2012-07-12, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Postnatal regulation of the small intestinal mucus layer is potentially important in the development of adult gut functionality. We hypothesized that the nature of bacterial colonization affects mucus gene regulation in early life.
We thus analyzed the influence of the presence of a conventional microbiota as well as two selected monocolonizing bacterial strains on the transcription of murine genes involved in mucus layer development during the first week of life.
Mouse pups (N = 8/group) from differently colonized dams: Germ-free (GF), conventional specific pathogen free (SPF), monocolonized with either Lactobacillus acidophilus NCFM (Lb) or Escherichia coli Nissle (Ec) were analyzed by qPCR on isolated ileal tissue sections from postnatal days 1 and 6 (PND1, PND6) after birth with respect to: (i) transcription of specific genes involved in mucus production (Muc1-4, Tff3) and (ii) amounts of 16S rRNA of Lactobacillus and E. coli. Quantification of 16S rRNA genes was performed to obtain a measure for amounts of colonized bacteria.
Results
We found a microbiota-independent transcriptional increase of all five mucus genes from PND1 to PND6. Furthermore, the relative level of transcription of certain mucus genes on PND1 was increased by the presence of bacteria. This was observed for Tff3 in the SPF, Ec, and Lb groups; for Muc2 in SPF; and for Muc3 and Muc4 in Ec and Lb, respectively.
Detection of bacterial 16S rRNA genes levels above the qPCR detection level occurred only on PND6 and only for some of the colonized animals. On PND6, we found significantly lower levels of Muc1, Muc2 and Muc4 gene transcription for Lb animals with detectable Lactobacillus levels as compared to animals with Lactobacillus levels below the detection limit.
Conclusions
In summary, our data show that development of the expression of genes encoding secreted (Muc2/Tff3) and membrane-bound (Muc1/Muc3/Muc4) mucus regulatory proteins, respectively, is distinct and that the onset of this development may be accelerated by specific groups of bacteria present or absent at the mucosal site.
【 授权许可】
2012 Bergström et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150416035807522.pdf | 406KB | ||
| Figure 2. | 22KB | Image | |
| Figure 1. | 13KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004, 4:45-60.
- [2]Adlerberth I, Wold AE: Establishment of the gut microbiota in Western infants. Acta Paediatr 2009, 98:229-238.
- [3]Fanaro S, Chierici R, Guerrini P, Vigi V: Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 2003, 91:48-55.
- [4]Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI: Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291:881-884.
- [5]Favier CF, Vaughan EE, de Vos WM, Akkermans AD: Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002, 68:219-226.
- [6]Comelli EM, Simmering R, Faure M, Donnicola D, Mansourian R, Rochat F, Corthesy-Theulaz I, Cherbut C: Multifaceted transcriptional regulation of the murine intestinal mucus layer by endogenous microbiota. Genomics 2008, 91:70-77.
- [7]Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M: Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 2000, 47:589-594.
- [8]McGuckin MA, Linden SK, Sutton P, Florin TH: Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011, 9:265-278.
- [9]Xing PX, Lees C, Lodding J, Prenzoska J, Poulos G, Sandrin M, Gendler S, McKenzie IF: Mouse mucin 1 (MUC1) defined by monoclonal antibodies. Int J Cancer 1998, 76:875-883.
- [10]Shekels LL, Hunninghake DA, Tisdale AS, Gipson IK, Kieliszewski M, Kozak CA, Ho SB: Cloning and characterization of mouse intestinal MUC3 mucin: 3' sequence contains epidermal-growth-factor-like domains. Biochem J 1998, 330(Pt 3):1301-1308.
- [11]van Klinken BJ, Einerhand AW, Duits LA, Makkink MK, Tytgat KM, Renes IB, Verburg M, Büller HA: Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol 1999, 276:G115-G124.
- [12]Desseyn JL, Clavereau I, Laine A: Cloning, chromosomal localization and characterization of the murine mucin gene orthologous to human MUC4. Eur J Biochem 2002, 269:3150-3159.
- [13]Salminen S, Isolauri E: Intestinal colonization, microbiota, and probiotics. J Pediatr 2006, 149:S115-S120.
- [14]Savage DC, Dubos R, Schaedler RW: The gastrointestinal epithelium and its autochthonous bacterial flora. J Exp Med 1968, 127:67-76.
- [15]Sanders ME, Klaenhammer TR: Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 2001, 84:319-331.
- [16]Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA: Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003, 52:827-833.
- [17]Dykstra NS, Hyde L, Adawi D, Kulik D, Ahrne S, Molin G, Jeppsson B, Mackenzie A, Mack DR: Pulse probiotic administration induces repeated small intestinal Muc3 expression in rats. Pediatr Res 2011, 69:206-211.
- [18]Vieira MA, Gomes TA, Ferreira AJ, Knobl T, Servin AL, Lievin-Le M: V: Two atypical enteropathogenic Escherichia coli strains induce the production of secreted and membrane-bound mucins to benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells. Infect Immun 2010, 78:927-938.
- [19]Wright CT, Klaenhammer TR: Calcium-induced alteration of cellular morphology affecting the resistance of lactobacillus acidophilus to freezing. Appl Environ Microbiol 1981, 41:807-815.
- [20]Nissle A: Mutaflor and its medical significance. Z Klin Med 1951, 2:68.
- [21]Jacobi CA, Malfertheiner P: Escherichia coli Nissle 1917 (Mutaflor): new insights into an old probiotic bacterium. Dig Dis 2011, 29:600-607.
- [22]Zeuthen LH, Fink LN, Metzdorff SB, Kristensen MB, Licht TR, Nellemann C, Frøkiær H: Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli. BMC Immunol 2010, 11:2. BioMed Central Full Text
- [23]Fink LN, Metzdorff SB, Zeuthen LH, Nellemann C, Kristensen MB, Licht TR, Frøkiær H: Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression. Am J Physiol Gastrointest Liver Physiol 2012, 302(1):G55-G65.
- [24]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339:62-66.
- [25]Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009, 37:e45.
- [26]Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25:169-193.
- [27]Veazey KJ, Golding MC: Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells. PLoS One 2011, 6:e27592.
- [28]Bergstrom KS, Guttman JA, Rumi M, Ma C, Bouzari S, Khan MA, Gibson DL, Vogl AW, Vallance BA: Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 2008, 76:796-811.
- [29]Dignass AU, Sturm A: Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 2001, 13:763-770.
- [30]Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ, Adams R, Kato M, Nelms KA, Hong NA, Florin TH, Goodnow CC, McGuckin MA: Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008, 5:e54.
- [31]Boshuizen JA, Reimerink JH, Korteland-Van Male AM, Van HV, Bouma J, Gerwig GJ, Koopmans MP, Büller HA, Dekker J, Einerhand AW: Homeostasis and function of goblet cells during rotavirus infection in mice. Virology 2005, 337:210-221.
- [32]Taupin D, Podolsky DK: Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 2003, 4:721-732.
- [33]Tran CP, Cook GA, Yeomans ND, Thim L, Giraud AS: Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 1999, 44:636-642.
- [34]Thim L, Madsen F, Poulsen SS: Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest 2002, 32:519-527.
- [35]Scholven J, Taras D, Sharbati S, Schon J, Gabler C, Huber O, Meyer Zum Büschenfelde D, Blin N, Einspainer R: Intestinal expression of TFF and related genes during postnatal development in a piglet probiotic trial. Cell Physiol Biochem 2009, 23:143-156.
- [36]Fanca-Berthon P, Michel C, Pagniez A, Rival M, Van SI, Darmaun D, Hoebler C: Intrauterine growth restriction alters postnatal colonic barrier maturation in rats. Pediatr Res 2009, 66:47-52.
- [37]Schaedler RW, Dubos R, Costello R: The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med 1965, 122:59-66.
- [38]Midtvedt T, Carlstedt-Duke B, Hoverstad T, Midtvedt AC, Norin KE, Saxerholt H: Establishment of a biochemically active intestinal ecosystem in ex-germfree rats. Appl Environ Microbiol 1987, 53:2866-2871.
- [39]Davis CP, McAllister JS, Savage DC: Microbial colonization of the intestinal epithelium in suckling mice. Infect Immun 1973, 7:666-672.
- [40]Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005, 6:279-284.
- [41]Laule O, Hirsch-Hoffmann M, Hruz T, Gruissem W, Zimmermann P: Web-based analysis of the mouse transcriptome using Genevestigator. BMC Bioinformatics 2006, 7:311. BioMed Central Full Text
- [42]Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 2004, 136:2621-2632.
- [43]Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):research0034.1-0034.11.
- [44]Tai EK, Wu WK, Wong HP, Lam EK, Yu L, Cho CH: A new role for cathelicidin in ulcerative colitis in mice. Exp Biol Med (Maywood) 2007, 232:799-808.
- [45]Liu J, Yu L, Tokar EJ, Bortner C, Sifre MI, Sun Y, Waalkes MP: Arsenic-induced aberrant gene expression in fetal mouse primary liver-cell cultures. Ann N Y Acad Sci 2008, 1140:368-375.
- [46]Kreutz MR, Langnaese K, Dieterich DC, Seidenbecher CI, Zuschratter W, Beesley PW, Gundelfinger ED: Distribution of transcript and protein isoforms of the synaptic glycoprotein neuroplastin in rat retina. Invest Ophthalmol Vis Sci 2001, 42:1907-1914.
- [47]Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP: Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001, 67:2578-2585.
- [48]Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, De Vos WM: Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002, 68:114-123.
- [49]Huijsdens XW, Linskens RK, Mak M, Meuwissen SG, Vandenbroucke-Grauls CM, Savelkoul PH: Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. J Clin Microbiol 2002, 40:4423-4427.
PDF