期刊论文详细信息
BMC Evolutionary Biology
Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda?
Gerd Bicker4  Steffen Harzsch3  Stefan Koenemann1  Björn M von Reumont5  Thomas M Iliffe2  Torben Stemme4 
[1] Montessori Bildungshaus Hannover, Bonner Straße 10, 30173, Hannover, Germany;Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA;Department of Cytology and Evolutionary Biology, Institute of Zoology, Ernst-Moritz-Arndt-University of Greifswald, Soldmannstraße 23, 17487, Greifswald, Germany;Division of Cell Biology, University of Veterinary Medicine Hannover, Bischhofsholer Damm 15, 30173, Hannover, Germany;Department of Life Sciences, Natural History Museum London, Cromwell, Road SW7 5BD, United Kingdom
关键词: Cryptocorynetes;    Godzilliognomus;    Speleonectes;    Immunocytochemistry;    Phylogeny;    Ground pattern;    Comparative neuroanatomy;    Homology;    Euarthropoda;   
Others  :  1087134
DOI  :  10.1186/1471-2148-13-119
 received in 2013-02-06, accepted in 2013-06-04,  发布年份 2013
PDF
【 摘 要 】

Background

Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin.

Results

The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing.

Conclusions

The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.

【 授权许可】

   
2013 Stemme et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023200921.pdf 3243KB PDF download
Figure 6. 84KB Image download
Figure 5. 119KB Image download
Figure 4. 176KB Image download
Figure 3. 195KB Image download
Figure 2. 205KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Friedrich M, Tautz D: Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 1995, 376:165-167.
  • [2]Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, von Haeseler A, Kube M, Reinhardt R, Burmester T: EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol 2007, 45:942-951.
  • [3]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452:745-749.
  • [4]Zrzavý J, Štys P: The basic body plan of arthropods: insights from evolutionary morphology and developmental biology. J Evol Biol 1997, 10:353-367.
  • [5]Dohle W: Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name ‘Tetraconata’ for the monophyletic unit Crustacea + Hexapoda. In Origin of the Hexapoda. Edited by Deuve T. Paris: Annales de la Societé entomologique de France; 2001:85-103.
  • [6]Richter S: The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2002, 2:217-237.
  • [7]Jenner RA: Higher-level crustacean phylogeny: consensus and conflicting hypotheses. Arthropod Struct Dev 2010, 39:143-153.
  • [8]Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 2010, 463:1079-1083.
  • [9]von Reumont BM, Jenner RA, Wills MA, Dell’ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B: Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 2012, 29:1031-1045.
  • [10]Schram FR: Crustacea. New York: Oxford University Press; 1986.
  • [11]Schram FR, Hof CHJ: Fossils and the interrelationships of major crustacean groups. In Arthropod Fossils and Phylogeny. Edited by Edgecombe G. New York: Columbia University Press; 1997:233-302.
  • [12]Wills MA: A phylogeny of recent Crustacea derived from morphological characters. In Arthropod Relationships. Edited by Fortey RA, Thomas RH. London: Chapman and Hall; 1998:189-209.
  • [13]Ax P: Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Gustav Fischer Verlag: Stuttgart, Jena, Lübeck, Ulm; 1999.
  • [14]Fanenbruck M, Harzsch S, Wägele JW: The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. PNAS 2004, 101:3868-3873.
  • [15]Fanenbruck M, Harzsch S: A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct Dev 2005, 34:343-378.
  • [16]Koenemann S, Schram FR, Bloechl A, Hoenemann M, Iliffe TM, Held C: Post-embryonic development of remipede crustaceans. Evol Dev 2007, 9:117-121.
  • [17]Koenemann S, Olesen J, Alwes F, Iliffe TM, Hoenemann M, Ungerer P, Wolff C, Scholtz G: The post-embryonic development of Remipedia (Crustacea) – additional results and new insights. Dev Genes Evol 2009, 219:131-145.
  • [18]Koenemann S, Jenner RA, Hoenemann M, Stemme T, von Reumont BM: Arthropod phylogeny revisited, with a focus on crustacean relationships. Arthropod Struct Dev 2010, 39:88-110.
  • [19]Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW: Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syst Biol 2008, 57:920-938.
  • [20]Ertas B, von Reumont BM, Wägele JW, Misof B, Burmester T: Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 2009, 26:2711-2718.
  • [21]Kubrakiewicz J, Jaglarz MK, Iliffe TM, Bilinski SM, Koenemann S: Ovary structure and early oogenesis in the remipede, Godzilliognomus frondosus (Crustacea, Remipedia): phylogenetic implications. Zoology 2012, 115:261-269.
  • [22]Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S: Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 2012, 12:168. BioMed Central Full Text
  • [23]Spears T, Abele LG: Crustacean phylogeny inferred from 18S rDNA. In Arthropod Relationships. Edited by Fortey RA, Thomas RH. London: Chapman & Hall; 1998:169-187.
  • [24]Giribet G, Edgecombe GD, Wheeler QD: Arthropod phylogeny based on eight molecular loci and morphology. Nature 2001, 413:157-161.
  • [25]Wheeler WC, Giribet G, Edgecombe GD: Arthropod systematics. The comparative study of genomic, anatomical, and paleontological information. In Assembling the Tree of Life. Edited by Cracraft J, Donoghue MJ. New York: Oxford University Press; 2004:281-295.
  • [26]Regier JC, Shultz JW, Kambic RE: Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc Biol Sci 2005, 272:395-401.
  • [27]Regier JC, Wilson HM, Shultz JW: Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Mol Phylogenet Evol 2005, 34:147-158.
  • [28]Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK: Phylotranscri ptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement and pancrustacean phylogeny. Mol Biol Evol 2012, 30:215-233.
  • [29]Harzsch S: Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 2006, 46:182-194.
  • [30]Harzsch S: The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species, Phylogeny and Evolution 2007, 1:33-57.
  • [31]Stern M, Bicker G: Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study. Cell Tissue Res 2008, 333:333-338.
  • [32]Strausfeld NJ: Arthropod Brains: Evolution, Functional Elegance, and Historical Significance. Cambridge, London: Harvard University Press; 2012.
  • [33]Harzsch S, Waloszek D: Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 2000, 29:307-322.
  • [34]Harzsch S: Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 2004, 259:198-213.
  • [35]Hummel NA, Li AY, Witt CM: Serotonin-like immunoreactivity in the central nervous system of two ixodid tick species. Exp Appl Acarol 2007, 43:265-278.
  • [36]Wolf H, Harzsch S: Serotonin-immunoreactive neurons in scorpion pectine neuropils: similarities to insect and crustacean primary olfactory centers? Zoology 2012, 115:151-159.
  • [37]Thompson KS, Zeidler MP, Bacon JP: Comparative anatomy of serotonin-like immunoreactive neurons in isopods: putative homologues in several species. J Comp Neurol 1994, 347:553-569.
  • [38]Callaway JC, Stuart AE: The distribution of histamine and serotonin in the barnacle’s nervous system. Microsc Res Tech 1999, 44:94-104.
  • [39]Brenneis G, Richter S: Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea) - an immunohistochemical study and 3D-reconstruction. J Morphol 2010, 271:169-189.
  • [40]Hartline DK, Christie AE: Immunohistochemical mapping of histamine, dopamine, and serotonin in the central nervous system of the copepod Calanus finmarchicus (Crustacea; Maxillopoda; Copepoda). Cell Tissue Res 2010, 341:49-71.
  • [41]Fritsch M, Richter S: The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 2010, 271:1457-1481.
  • [42]Fritsch M, Richter S: Nervous system development in Spinicaudata and Cyclestherida (Crustacea, Branchiopoda)–comparing two different modes of indirect development by using an event pairing approach. J Morphol 2012, 273:672-695.
  • [43]Fritsch M, Kaji T, Olesen J, Richter S: The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda) - insights into the evolution and homologies of branchiopod limbs and “frontal organs”. Zoomorphology 2013, 132:163-181.
  • [44]Tyrer NM, Turner JD, Altman JS: Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 1984, 227:313-330.
  • [45]Longley AJ, Longley RD: Serotonin immunoreactivity in the nervous system of the dragonfly nymph. J Neurobiol 1986, 17:329-338.
  • [46]Lundell MJ, Hirsh J: Temporal and spatial development of serotonin and dopamine neurons in the Drosophila CNS. Dev Biol 1994, 165:385-396.
  • [47]Hörner M: Cytoarchitecture of histamine-, dopamine-, serotonin- and octopamine-containing neurons in the cricket ventral nerve cord. Microsc Res Tech 1999, 44:137-165.
  • [48]Hay-Schmidt A: The evolution of the serotonergic nervous system. Proc Biol Sci 2000, 267:1071-1079.
  • [49]Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S: Invertebrate neurophylogeny - suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010, 7:29. BioMed Central Full Text
  • [50]Bishop CA, O’Shea M: Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). J Neurobiol 1983, 14:251-169.
  • [51]Whitington PM, Leach D, Sandeman R: Evolutionary change in neural development within the arthropods: axonogenesis in the embryos of two crustaceans. Development 1993, 118:449-461.
  • [52]Harzsch S, Anger K, Dawirs RR: Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 1997, 41:477-484.
  • [53]Gerberding M, Scholtz G: Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 2001, 235:397-409.
  • [54]Vilpoux K, Sandeman R, Harzsch S: Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 2006, 216:209-223.
  • [55]Harzsch S, Glötzner J: An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struc Dev 2002, 30:251-270.
  • [56]Kirsch R, Richter S: The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 2007, 36:143-156.
  • [57]Bullock TH, Horridge GA: Structure and Function in the Nervous Systems of Invertebrates. Volume II. San Francisco: W.H. Freeman and Company; 1965:802-1719.
  • [58]Whitington PM, Meier T, King P: Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes. Roux’s Arch Dev Biol 1991, 199:349-363.
  • [59]Mittmann B, Scholtz G: Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 2003, 213:9-17.
  • [60]Real D, Czternasty G: Mapping of serotonin-like immunoreactivity in the ventral nerve cord of crayfish. Brain Res 1990, 521:203-212.
  • [61]Antonsen BL, Paul DH: Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Neurol 2001, 439:450-468.
  • [62]Beltz BS, Kravitz EA: Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 1983, 3:585-602.
  • [63]Harrison P, Macmillan D, Young H: Serotonin immunoreactivity in the ventral nerve cord of the primitive crustacean Anaspides tasmaniae closely resembles that of crayfish. J Exp Biol 1995, 198:531-535.
  • [64]Harzsch S, Dawirs RR: A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertebr Neurosci 1995, 1:53-65.
  • [65]Washington B, Higgins DE, McAdory B, Newkirk RF: Serotonin-immunoreactive neurons and endogenous serotonin in the opisthosomal ventral nerve cord of the horseshoe crab, Limulus polyphemus. J Comp Neurol 1994, 347:312-320.
  • [66]Neiber MT, Hartke TR, Stemme T, Bergmann A, Rust J, Iliffe TM, Koenemann S: Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). PLoS One 2011, 6:e19627.
  • [67]Koenemann S, Schram FR, Hoenemann M, Iliffe TM: Phylogenetic analysis of Remipedia (Crustacea). Org Divers Evol 2007, 7:33-51.
  • [68]Harzsch S: Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the american lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 2003, 258:44-56.
  • [69]Harzsch S: Neurobiologie und Evolutionsforschung: “Neurophylogenie” und die Stammesgeschichte der Euarthropoda. e-Neuroforum 2002, 4:267-273.
  • [70]Harzsch S, Müller CHG, Wolf H: From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 2005, 215:53-68.
  • [71]Stollewerk A, Simpson P: Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 2005, 27:874-883.
  • [72]Stollewerk A: Evolution of neurogenesis in arthropods. In In Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Edited by Minelli A, Fusco G. Cambridge: Cambridge University Press; 2008:359-380.
  • [73]Whitington PM, Mayer G: The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 2011, 40:193-209.
  • [74]Taghert PH, Goodman CS: Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 1984, 4:989-1000.
  • [75]Lundell MJ, Hirsh J: eagle is required for the specification of serotonin neurons and other neuroblast 7–3 progeny in the Drosophila CNS. Development 1998, 125:463-472.
  • [76]Schmid A, Chiba A, Doe CQ: Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 1999, 126:4653-4689.
  • [77]Thomas JB, Bastiani MJ, Bate M, Goodman CS: From grasshopper to Drosophila: a common plan for neuronal development. Nature 1984, 310:203-207.
  • [78]Goodman CS, Doe CQ: Embryonic development of the Drosophila central nervous system. In The development of Drosophila melanogaster. Edited by Bate M, Martinez Arias A. New York: Cold Spring Harbor Laboratory Press; 1993:1131-1206.
  • [79]Duman-Scheel M, Patel NH: Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 1999, 126:2327-2334.
  • [80]Ungerer P, Scholtz G: Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc Biol Sci 2008, 275:369-376.
  • [81]Gerberding M, Scholtz G: Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Genes Evol 1999, 209:91-102.
  • [82]Moura G, Christoffersen ML: The system of the mandibulate arthropods: Tracheata and Remipedia as sister groups, “Crustacea” nonmonophyletic. J Comp Biol 1996, 1:95-113.
  • [83]Stegner MEJ, Richter S: Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 2011, 40:221-243.
  • [84]Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E: Invertebrate Synapsins: A single gene codes for several isoforms in Drosophila. J Neurosci 1996, 16:3154-3165.
  • [85]Homberg U: Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol 1991, 303:245-254.
  • [86]Seidel C, Bicker G: The developmental expression of serotonin-immunoreactivity in the brain of the pupal honeybee. Tissue Cell 1996, 28:663-672.
  • [87]Dacks AM, Christensen TA, Hildebrand JG: Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 2006, 498:727-746.
  • [88]Stern M, Knipp S, Bicker G: Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J Comp Neurol 2007, 501:38-51.
  • [89]Wildt M, Harzsch S: A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 2002, 52:117-132.
  • [90]Beltz BS, Kordas K, Lee MM, Long JB, Benton JL, Sandeman DC: Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 2003, 455:260-269.
  • [91]Harzsch S, Hansson BS: Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 2008, 9:58. BioMed Central Full Text
  • [92]Groh C, Rössler W: Comparison of microglomerular structures in the mushroom body calyx of neopteran insects. Arthropod Struct Dev 2010, 40:358-367.
  • [93]Kollmann M, Huetteroth W, Schachtner J: Brain organization in Collembola (springtails). Arthropod Struct Dev 2011, 40:304-316.
  • [94]Sombke A, Harzsch S, Hansson BS: Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 2011, 36:43-61.
  • [95]Fabian-Fine R, Volknandt W, Seyfarth E: Peripheral synapses at identifiable mechanosensory neurons in the spider Cupiennius salei: synapsin-like immunoreactivity. Cell Tissue Res 1999, 295:13-19.
  文献评价指标  
  下载次数:29次 浏览次数:8次