期刊论文详细信息
BMC Genomics
The genetics of colony form and function in Caribbean Acropora corals
Steven V Vollmer1  Stefan T Kaluziak1  Elizabeth M Hemond1 
[1] Northeastern University, Marine Science Center, Nahant, MA, USA
关键词: RNA-seq;    Gene expression;    Cnidaria;    Acropora;    Coral Reefs;   
Others  :  1125738
DOI  :  10.1186/1471-2164-15-1133
 received in 2014-06-23, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata.

Results

Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species.

Conclusions

The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

【 授权许可】

   
2014 Hemond et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150217024515286.pdf 3212KB PDF download
Figure 7. 184KB Image download
Figure 6. 87KB Image download
Figure 5. 215KB Image download
Figure 4. 130KB Image download
Figure 3. 141KB Image download
Figure 2. 54KB Image download
Figure 1. 157KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Mackie GO: From aggregates to integrates: physiological aspects of modularity in colonial animals. Phil Trans R Soc B 1986, 313:175-196.
  • [2]Pearse VB, Muscatine L: Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 1971, 141:350-363.
  • [3]Cartwright P: The development and evolution of hydrozoan polyp and colony form. Hydrobiologia 2004, 530:309-317.
  • [4]Siebert S, Robinson MD, Tintori SC, Goetz F, Helm RR, Smith SA, Shaner N, Haddock SHD, Dunn CW: Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows. PLoS One 2011, 6:e22953.
  • [5]Gladfelter EH: Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1982, 1:45-51.
  • [6]Rinkevich B: The branching coral Stylophora pistillata: contribution of genetics in shaping colony landscape. Isr J Zool 2002, 48:71-82.
  • [7]Shaish L, Abelson A, Rinkevich B: How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS One 2007, 2:e644.
  • [8]Todd PA: Morphological plasticity in scleractinian corals. Biol Rev 2008, 83:315-337.
  • [9]Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E: Are Hox genes ancestrally involved in axial patterning? evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009, 4:e4231.
  • [10]Matus DQ, Magie C, Pang K, Martindale MQ, Thomsen GH: The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 2008, 313:501-518.
  • [11]Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW: The Wnt code: cnidarians signal the way. Oncogene 2006, 25:7450-7460.
  • [12]Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt H, Technau U, Haeseler von A, Hobmayer B, Martindale MQ, Holstein TW: Unexpected complexity of the Wnt gene family in a sea anemone. Nature 2005, 433:156-160.
  • [13]Lee PN, Pang K, Matus DQ, Martindale MQ: A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 2006, 17:157-167.
  • [14]Samuel G, Miller D, Saint R: Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora. Evol Dev 2001, 3:241-250.
  • [15]Zoccola D, Moya A, Béranger GE, Tambutté E, Allemand D, Carle GF, Tambutté S: Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotechnol 2009, 11:260-269.
  • [16]Käsbauer T, Towb P, Alexandrova O, David CN, Dall’Armi E, Staudigl A, Stiening B, Böttger A: The Notch signaling pathway in the cnidarian Hydra. Dev Biol 2007, 303:376-390.
  • [17]Marlow H, Roettinger E, Boekhout M, Martindale MQ: Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 2012, 362:295-308.
  • [18]Ball EE, Hayward DC, Saint R, Miller DJ: A simple plan — cnidarians and the origins of developmental mechanisms. Nat Rev Genet 2004, 5:567-577.
  • [19]Martindale MQ: The evolution of metazoan axial properties. Nat Rev Genet 2005, 6:917-927.
  • [20]Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 2009, 10:219.
  • [21]Steele R: Developmental signaling in Hydra: what does it take to build a “simple” animal? Dev Biol 2002, 248:199-219.
  • [22]Steele RE, David CN, Technau U: A genomic view of 500 million years of cnidarian evolution. Trends Genet 2011, 27:7-13.
  • [23]Bode HR: The role of Hox genes in axial patterning in Hydra. Integr Comp Biol 2001, 41:621-628.
  • [24]Broun M, Gee L, Reinhardt B, Bode HR: Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 2005, 132:2907-2916.
  • [25]Müller WA, Teo R, Frank U: Totipotent migratory stem cells in a hydroid. Dev Biol 2004, 275:215-224.
  • [26]Hobmayer B, Rentzsch F, Kuhn K, Happel CM, Laue von CC, Snyder P, Rothbächer U, Holstein TW, Laue Von CC, Snyder P, Rothbächer U, Holstein TW: WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 2000, 407:186-189.
  • [27]Plickert G, Jacoby V, Frank U, Müller WA, Mokady O: Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 2006, 298:368-378.
  • [28]Duffy DJ, Plickert G, Kuenzel T, Tilmann W, Frank U: Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development 2010, 137:3057-3066.
  • [29]Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ: An ancient role for nuclear ß-catenin in the evolution of axial polarity and germ layer segregation. Nature 2003, 426:446-450.
  • [30]de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, Miller DJ: Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a “radiate” animal, the anthozoan cnidarian Acropora millepora. Dev Biol 2006, 298:632-643.
  • [31]Hayward DC, Catmull J, Reece-Hoyes JS, Berghammer H, Dodd H, Hann SJ, Miller DJ, Ball EE: Gene structure and larval expression of cnox-2Am from the coral Acropora millepora. Dev Genes Evol 2001, 211:10-19.
  • [32]Cartwright P, Bowsher J, Buss LW: Expression of a Hox gene, Cnox-2, and the division of labor in a colonial hydroid. Proc Natl Acad Sci U S A 1999, 96:2183-2186.
  • [33]Cartwright P, Schierwater B, Buss LW: Expression of a Gsx parahox gene, Cnox-2, in colony ontogeny in Hydractinia (Cnidaria: Hydrozoa). J Exp Zool Part A 2006, 306B:460-469.
  • [34]Grasso LC, Maindonald J, Rudd S, Hayward DC, Saint R, Miller DJ, Ball EE: Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics 2008, 9:540.
  • [35]Grasso LC, Negri AP, Forêt S, Saint R, Hayward DC, Miller DJ, Ball EE: The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol 2011, 353:411-419.
  • [36]Oliver JK: Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 1984, 3:139-147.
  • [37]Goreau TF: The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 1959, 116:59-75.
  • [38]Goreau TF: Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Ann N Y Acad Sci 1963, 109:127-167.
  • [39]Goreau TF, Goreau N: The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 1959, 117:239-250.
  • [40]Gladfelter EH, Michel G, Sanfelici A: Metabolic gradients along a branch of the reef coral Acropora palmata. B Mar Sci 1989, 44:1166-1173.
  • [41]Oliver JK: Aspects of skeletal growth in the Indo-Pacific staghorn coralAcropora formosa. PhD thesis. James Cook University, Marine Biology Department; 1987.
  • [42]Szmant AM: Reproductive ecology of Caribbean reef corals. Coral Reefs 1986, 5:43-53.
  • [43]Wallace C: Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar Biol 1985, 88:217-233.
  • [44]Bay LK, Nielsen HB, Jarmer H, Seneca F, van Oppen MJH: Transcriptomic variation in a coral reveals pathways of clonal organisation. Mar Genom 2009, 2:119-125.
  • [45]Vollmer SV, Palumbi SR: Hybridization and the evolution of reef coral diversity. Science 2002, 296:2023-2025.
  • [46]McNeill DF, Budd AF, Borne PF: Earlier (late Pliocene) first appearance of the Caribbean reef-building coral Acropora palmata: Stratigraphic and evolutionary implications. Geol 1997, 25:891.
  • [47]Polato NR, Vera JC, Baums IB: Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome. PLoS One 2011, 6:e28634.
  • [48]Meyer E, Aglyamova GV, Matz MV: Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 2011, 20:3599-3616.
  • [49]Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM, Woo HN, Gattuso J-P, Forêt S, Miller DJ: Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 2012, 21:2440-2454.
  • [50]Libro S, Kaluziak ST, Vollmer SV: RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with White Band Disease. PLoS One 2013, 8:e81821.
  • [51]Cohen AL, McConnaughey TA: Geochemical perspectives on coral mineralization. Rev Mineral Geochem 2003, 54:151-187.
  • [52]Technau U, Steele RE: Evolutionary crossroads in developmental biology: Cnidaria. Development 2011, 138:1447-1458.
  • [53]Guder C: An ancient Wnt-Dickkopf antagonism in Hydra. Development 2006, 133:901-911.
  • [54]Trevino M, Stefanik DJ, Rodriguez R, Harmon S, Burton PM: Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis. Dev Dyn 2011, 240:2673-2679.
  • [55]Momose T, Houliston E: Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 2007, 5:e70.
  • [56]Philipp I, Aufschnaiter R, Özbek S, Pontasch S, Jenewein M, Watanabe H, Rentzsch F, Holstein TW, Hobmayer B: Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 2009, 106:4290-4295.
  • [57]Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Özbek S, Bode H, Holstein TW: Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 2009, 330:186-199.
  • [58]Onai T, Akira T, Setiamarga DHE, Holland LZ: Essential role of Dkk3 for head formation by inhibiting Wnt/β-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev 2012, 14:338-350.
  • [59]Nakamura REI, Hackam AS: Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 2010, 28:232-242.
  • [60]Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP, Abzhanov A: Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc Natl Acad Sci U S A 2011, 108:4057-4062.
  • [61]Fedders H, Augustin R, Bosch TCG: A Dickkopf-3-related gene is expressed in differentiating nematocytes in the basal metazoan Hydra. Dev Genes Evol 2004, 214:72-80.
  • [62]Williams BO, Insogna KL: Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res 2009, 24:171-178.
  • [63]Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H, Sasaki H: Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 2008, 15:23-36.
  • [64]Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE, Lindner V: Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res 2005, 96:261-268.
  • [65]Panakova D, Sprong H, Marois E, Thiele C, Eaton S: Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005, 435:58-65.
  • [66]Golan T, Yaniv A, Bafico A, Liu G, Gazit A: The human frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt-ß-catenin signaling cascade. J Biol Chem 2004, 279:14879-14888.
  • [67]Cui C-Y, Klar J, Georgii-Heming P, Fröjmark A-S, Baig SM, Schlessinger D, Dahl N: Frizzled6 deficiency disrupts the differentiation process of nail development. J Investig Dermatol 2013, 133:1990-1997.
  • [68]Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H, Chung U-I: The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Comm 2005, 333:1300-1308.
  • [69]Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B: Interactions between Sox9 and ß-catenin control chondrocyte differentiation. Gene Dev 2004, 18:1072-1087.
  • [70]Zilberberg A, Yaniv A, Gazit A: The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 2004, 279:17535-17542.
  • [71]Koch U, Lehal R, Radtke F: Stem cells living with a Notch. Development 2013, 140:689-704.
  • [72]Münder S, Käsbauer T, Prexl A, Aufschnaiter R, Zhang X, Towb P, Böttger A: Notch signalling defines critical boundary during budding in Hydra. Dev Biol 2010, 344:331-345.
  • [73]Collu GM, Hidalgo-Sastre A, Acar A, Bayston L, Gildea C, Leverentz MK, Mills CG, Owens TW, Meurette O, Dorey K, Brennan K: Dishevelled limits Notch signalling through inhibition of CSL. Development 2012, 139:4405-4415.
  • [74]Lin GL, Hankenson KD: Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2011, 112:3491-3501.
  • [75]Matus DQ, Thomsen GH, Martindale MQ: Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 2006, 16:499-505.
  • [76]Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N: Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci U S A 1998, 95:9337-9342.
  • [77]Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL: A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 1995, 376:249-253.
  • [78]Niehrs C: On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 2010, 137:845-857.
  • [79]Hayward DC, Samuel G, Pontynen PC, Catmull J, Saint R, Miller DJ, Ball EE: Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci U S A 2002, 99:8106-8111.
  • [80]Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U: Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Dev Biol 2006, 296:375-387.
  • [81]Saina M, Genikhovich G, Renfer E, Technau U: BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 2009, 106:18592-18597.
  • [82]Parsons KJ, Albertson RC: Roles for Bmp4 and CaM1 in shaping the jaw: Evo-Devo and beyond. Annu Rev Genet 2009, 43:369-388.
  • [83]Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM: Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001, 27:84-88.
  • [84]Hino J, Nishimatsu S-I, Nagai T, Matsuo H, Kangawa K, Nohno T: Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. Dev Biol 2003, 260:138-157.
  • [85]Hino J, Kangawa K, Matsuo H, Nohno T, Nishimatsu S: Bone morphogenetic protein-3 family members and their biological functions. Front Biosci 2004, 9:1520-1529.
  • [86]Gauchat D, Kreger S, Holstein T, Galliot B: prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 1998, 125:1637-1645.
  • [87]Broun M, Sokol S, Bode HR: Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of Hydra. Development 1999, 126:5245-5254.
  • [88]Srivastava M, Larroux C, Lu DR, Mohanty K, Chapman J, Degnan B, Rokhsar DS: Early evolution of the LIM homeobox gene family. BMC Biol 2010, 8:4.
  • [89]Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013, 11:e1001488.
  • [90]Martinez DE, Dirksen ML, Bode PM, Jamrich M, Steele RE, Bode HR: Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in Hydra. Dev Biol 1997, 192:523-536.
  • [91]Magie CR, Pang K, Martindale MQ: Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 2005, 215:618-630.
  • [92]Benayoun BA, Caburet S, Veitia RA: Forkhead transcription factors: key players in health and disease. Trends Genet 2011, 27:224-232.
  • [93]Roberts RB, Hu Y, Albertson RC, Kocher TD: Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proc Natl Acad Sci U S A 2011, 108:13194-13199.
  • [94]Case R, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A: Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 2007, 42:345-350.
  • [95]Hilton JD, Brady AK, Spaho SA, Vize PD: Photoreception and signal transduction in corals: proteomic and behavioral evidence for cytoplasmic calcium as a mediator of light responsivity. Biol Bull 2012, 223:291-299.
  • [96]Russell TJ, Watson GM: Evidence for intracellular stores of calcium ions involved in regulating nematocyst discharge. J Exp Zool 1995, 273:175-185.
  • [97]Reyes-Bermudez A, DeSalvo MK, Voolstra CR, Sunegawa S, Szmant AM, Iglesias-Prieto R, Medina M: Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata. Mar Genomics 2009, 2:149-159.
  • [98]Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF: KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013, 14:1.
  • [99]Mallarino R, Campàs O, Fritz JA, Burns KJ, Weeks OG, Brenner MP, Abzhanov A: Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proc Natl Acad Sci U S A 2012, 109:16222-16227.
  • [100]Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ: The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 2006, 442:563-567.
  • [101]Gladfelter EH: Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth. Coral Reefs 2007, 26:883-892.
  • [102]Gladfelter EH: Skeletal development in Acropora cervicornis II: Diel patterns of calcium carbonate accretion. Coral Reefs 1983, 2:91-100.
  • [103]Gladfelter EH, Monahan R, Gladfelter WB: Growth rates of five reef-building corals in the northeastern Caribbean. B Mar Sci 1978, 28:728-734.
  • [104]Bak RPM: The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 1976, 10:285.
  • [105]Shinn EA: Coral growth-rate, an environmental indicator. J Paleontol 1966, 40:233-240.
  • [106]Schuhmacher H, Plewka M: The Adaptive Significance of Mechanical Properties Versus Morphological Adjustments in Skeletons of Acropora palmata and Acropora cervicornis (Cnidaria, Scleractinia). In Proceedings of the Fourth International Coral Reef Symposium, Volume 2. Manila; 1981:121-128.
  • [107]Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté E, Zoccola D, Allemand D: Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 2011, 408:58-78.
  • [108]Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S: Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci U S A 2009, 106:16574-16579.
  • [109]Al-Horani FA, Al-Moghrabi SM, de Beer D: The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 2003, 142:419-426.
  • [110]Chalker BE: Calcium transport during skeletogenesis in hermatypic corals. Comp Biochem Physiol A Comp Physiol 1976, 54:455-459.
  • [111]Marshall AT, Clode PL, Russell R, Prince K, Stern R: Electron and ion microprobe analysis of calcium distribution and transport in coral tissues. J Exp Biol 2007, 210:2453-2463.
  • [112]Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J: Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 2006, 151:71-83.
  • [113]Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D: Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 2008, 283:25475-25484.
  • [114]Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D: Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevol 2004, 3:453-467.
  • [115]Tambutté E, Allemand D, Mueller E, Jaubert J: A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 1996, 199:1029-1041.
  • [116]Zoccola D, Tambutté E, Senegas-Balas F, Michiels J-F, Failla J-P, Jaubert J, Allemand D: Cloning of a calcium channel a1 subunit from the reef-building coral, Stylophora pistillata. Gene 1999, 227:157-167.
  • [117]Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca J-C, Allemand D, Tambutté S: Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. BBA Biomembranes 2004, 1663:117-126.
  • [118]Furla P, Allemand D, Orsenigo MN: Involvement of H(+)-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Physiol Regul Integr Comp Physiol 2000, 278:R870-R881.
  • [119]Barnes DJ: Coral skeletons: an explanation of their growth and structure. Science 1970, 170:1305-1308.
  • [120]Constantz BR: Coral skeleton construction: a physiochemically dominated process. Palaios 1986, 1:152-157.
  • [121]Cuif J-P, Dauphin Y, Gautret P: Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization diagenesis. Int J Earth Sci 1999, 88:582-592.
  • [122]Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T: Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Comm 2003, 304:11-17.
  • [123]Watanabe T: Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Phys B 2003, 136:767-774.
  • [124]Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S: Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 2004, 24:149-156.
  • [125]Puverel S, Tambutté E, Pereira-Mouriès L, Zoccola D, Allemand D, Tambutté S: Soluble organic matrix of two scleractinian corals: partial and comparative analysis. Comp Biochem Phys B 2005, 141:480-487.
  • [126]Helman Y, Natale F, Sherrell RM, Lavigne M, Starovoytov V, Gorbunov MY, Falkowski PG: Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci U S A 2008, 105:54-58.
  • [127]Ramos-Silva P, Kaandorp JA, Huisman L, Marie B, Zanella-Cleon I, Guichard N, Miller DJ, Marin F: The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 2013, 30:2099-2112.
  • [128]Sunagawa S, DeSalvo MK, Voolstra CR, Reyes-Bermudez A, Medina M: Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 2009, 4:e4865.
  • [129]Puverel S, Houlbrèque F, Tambutté E, Zoccola D, Payan P, Caminiti N, Tambutté S, Allemand D: Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata. Comp Biochem Phys A 2007, 147:850-856.
  • [130]Wainwright SA: Skeletal organization in the coral, Pocillopora damicornis. Q J Microsc Sci 1963, 3:169-183.
  • [131]Young SD: Calcification and synthesis of skeletal organic material in the coral, Pocillopora damicornis (L.)(Astrocoeniidae, Scleractinia). Comp Biochem Physiol A Comp Physiol 1973, 44:669-672.
  • [132]Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE: Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 2009, 9:178.
  • [133]Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, Ball EE: Differential gene expression at coral settlement and metamorphosis - A subtractive hybridization study. PLoS One 2011, 6:e26411.
  • [134]Siboni N, Abrego D, Motti CA, Tebben J, Harder T: Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora. PLoS One 2014, 9:e91082.
  • [135]Marin F, Corstjens P, de Gaulejac B, de Vrind-De JE, Westbroek P: Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna noblis (Bivalvia, Pteriomorphia). J Biol Chem 2000, 275:20667-20675.
  • [136]Brown BE, Bythell JC: Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 2005, 296:291-309.
  • [137]Muscatine L, Tambutté E, Allemand D: Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 1997, 16:205-213.
  • [138]Goldberg WM: Desmocytes in the calicoblastic epithelium of the stony coral Mycetophyllia reesi and their attachment to the skeleton. Tissue Cell 2001, 33:388-394.
  • [139]Marie B, Trinkler N, Zanella-Cleon I, Guichard N, Becchi M, Paillard C, Marin F: Proteomic identification of novel proteins from the calcifying shell matrix of the manila clam Venerupis philippinarum. Mar Biotechnol 2011, 13:955-962.
  • [140]Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C: Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 2011, 7:e1002187.
  • [141]Muramoto K, Yako H, Murakami K, Odo S, Kamiya H: Inhibition of the growth of calcium carbonate crystals by multiple lectins in the coelomic fluid of the acorn barnacle Megabalanus rosa. Comp Biochem Phys B 1994, 107:401-409.
  • [142]Matsubara H, Hayashi T, Ogawa T, Muramoto K, Jimbo M, Kamiya H: Modulating effect of acorn barnacle C-type lectins on the crystallization of calcium carbonate. Fisheries Sci 2008, 74:418-424.
  • [143]Kamiya H, Jimbo M, Yako H, Muramoto K, Nakamura O, Kado R, Watanabe T: Participation of the C-type hemolymph lectin in mineralization of the acorn barnacle Megabalanus rosa. Mar Biol 2002, 140:1235-1240.
  • [144]Kvennefors ECE, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC: An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 2008, 32:1582-1592.
  • [145]Wood-Charlson EM, Weis VM: The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev Comp Immunol 2009, 33:881-889.
  • [146]Detournay O, Weis VM: Role of the sphingosine rheostat in the regulation of cnidarian-dinoflagellate symbioses. Biol Bull 2011, 221:261-269.
  • [147]Bachok Z, Mfilinge P, Tsuchiya M: Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 2006, 25:545-554.
  • [148]Arai I, Kato M, Heyward A, Ikeda Y, Iizuka T, Maruyama T: Lipid composition of positively buoyant eggs of reef building corals. Coral Reefs 1993, 12:71-75.
  • [149]Yu BP: Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994, 74:139-162.
  • [150]Grotendorst GR, Hessinger DA: Enzymatic characterization of the major phospholipase A2 component of sea anemone (Aiptasia pallida) nematocyst venom. Toxicon 2000, 38:931-943.
  • [151]Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JAH, Fenner PJ, Winkel KD: Phospholipase A2 in Cnidaria. Comp Biochem Phys B 2004, 139:731-735.
  • [152]Kaniewska P, Campbell PR, Fine M, Hoegh-Guldberg O: Phototropic growth in a reef flat acroporid branching coral species. J Exp Biol 2009, 212:662-667.
  • [153]Levy O: Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 2003, 206:4041-4049.
  • [154]Brady AK, Hilton JD, Vize PD: Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 2009, 28:677-680.
  • [155]Boch CA, Ananthasubramaniam B, Sweeney AM, Doyle FJ, Morse DE: Effects of light dynamics on coral spawning synchrony. Biol Bull 2011, 220:161-173.
  • [156]Salih A, Larkum AWD, Cox G, Kühl M, Hoegh-Guldberg O: Fluorescent pigments in corals are photoprotective. Nature 2000, 408:850-853.
  • [157]Roth MS, Latz MI, Goericke R, Deheyn DD: Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol 2010, 213:3644-3655.
  • [158]Bay LK, Guérécheau A, Andreakis N, Ulstrup KE, Matz MV: Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora. PLoS One 2013, 8:e61736.
  • [159]DeSalvo MK, Sunagawa S, Voolstra CR, Medina M: Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 2010, 402:97-113.
  • [160]Tsang WH, McGaughey NJ, Wong YH, Wong J: Melatonin and 5-methoxytryptamine induced muscular contraction in sea anemones. J Exp Zool Part A 1997, 279:201-207.
  • [161]Duffy DJ, Millane RC, Frank U: A heat shock protein and Wnt signaling crosstalk during axial patterning and stem cell proliferation. Dev Biol 2012, 362:271-281.
  • [162]Meier S, Jensen PR, Adamczyk P, Bächinger HP, Holstein TW, Engel J, Özbek S, Grzesiek S: Sequence-structure and structure-function analysis in cysteine-rich domains forming the ultrastable nematocyst wall. J Mol Biol 2007, 368:718-728.
  • [163]Ann EJ, Kim HY, Seo MS, Mo JS, Kim MY, Yoon JH, Ahn JS, Park HS: Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. J Biol Chem 2012, 287:36814-36829.
  • [164]Itasaki N, Hoppler S: Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2009, 239:16-33.
  • [165]Duffy DJ: Modulation of Wnt signaling: a route to speciation? Commun Integr Biol 2011, 4:59-61.
  • [166]Carroll SB: Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008, 134:25-36.
  • [167]Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ: Bmp4 and morphological variation of beaks in Darwin’s finches. Science 2004, 305:1462-1465.
  • [168]Albertson RC, Streelman JT, Kocher TD, Yelick PC: Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proc Natl Acad Sci U S A 2005, 102:16287-16292.
  • [169]Clarke KR, Gorley RN: PRIMER V6: User Manual/Tutorial. Plymouth: PRIMER-E; 2006.
  • [170]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [171]Anderson MJ: A new method for non parametric multivariate analysis of variance. Austral Ecology 2001, 26:32-46.
  • [172]Pespeni MH, Barney BT, Palumbi SR: Differences in the regulation of growth and biomineralization genes revealed through long-term common-garden acclimation and experimental genomics in the purple sea urchin. Evolution 2013, 67:1901-1914.
  • [173]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995, 57:289-300.
  • [174]Gene-E [http://www.broadinstitute.org/cancer/software/GENE-E/index.html webcite]
  • [175]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Consortium GO: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.
  • [176]Lee HK, Braynen W, Keshav K, Pavlidis P: ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics 2005, 6:269.
  文献评价指标  
  下载次数:35次 浏览次数:26次