期刊论文详细信息
BMC Oral Health
Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study
Silvia Migliaccio2  Francesca Wannenes2  Blerina Zeza5  Marina Brama2  Lia Rimondini1  Gabriele Di Carlo4  Matteo Saccucci4  Giorgio Pompa3  Andrea Pilloni5 
[1] Department of Health Sciences, Laboratory of Biomedical and Dental Materials, University of Oriental Piedmont “Amedeo Avogadro”, Novara, Italy;Medical Phatophysiology, Endocrinology and Nutrition Unit, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy;Department of Oral and Maxillofacial Science, Prosthodontics Unit, Sapienza University of Rome, Rome, Italy;Department of Oral and Maxillofacial Science, Pediatric Dentistry Unit, Sapienza University of Rome, Rome, Italy;Department of Oral and Maxillofacial Science, Periodontics Unit, Sapienza University of Rome, Rome, Italy
关键词: Alveolar bone regeneration;    Human osteoblasts;    Nanohydroxyapatite;   
Others  :  1118415
DOI  :  10.1186/1472-6831-14-22
 received in 2013-11-27, accepted in 2014-03-17,  发布年份 2014
PDF
【 摘 要 】

Background

Nano-hydroxyapatite (nHA) is a potential ideal biomaterial for bone regeneration. However, studies have yet to characterize the behavior of human osteoblasts derived from alveolar bone on nHA. Thus, the aim of the present study was to evaluate the influence of nHA on the adhesion, proliferation and differentiation of these alveolar bone-derived cells.

Methods

Primary human alveolar osteoblasts were collected from the alveolar ridge of a male periodontal patient during osseous resective surgery and grown on culture plates coated with either polylysine or polylysine with nano-hydroxyapatite (POL/nHA) composite. The cells were grown and observed for 14 days, and then assessed for potential modifications to osteoblasts homeostasis as evaluated by quantitative reverse transcriptase-polymerase chain reaction (real time RT-PCR), scanning electron microscopy and atomic force microscopy.

Results

Real time PCR revealed a significant increase in the expression of the selected markers of osteoblast differentiation (bone morphogenetic protein (BMP)-2,-5,-7, ALP, COLL-1A2, OC, ON) in cells grown on the POL/nHA substrate. In addition, as compared with the POL surface, cells grown on the POL/nHA substrate demonstrated better osteoconductive properties, as demonstrated by the increase in adhesion and spreading, likely as a result of the increased surface roughness of the composite.

Conclusions

The increased expression of BMPs and osteoinductive biomarkers suggest that nano-hydroxyapatite may stimulate the proliferation and differentiation of local alveolar osteoblasts and thus encourage bone regeneration at sites of alveolar bone regeneration.

【 授权许可】

   
2014 Pilloni et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206023614644.pdf 2530KB PDF download
Figure 4. 38KB Image download
Figure 3. 80KB Image download
Figure 2. 88KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sculean A, Nikolidakis D, Schwarz F: Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials – biological foundation and preclinical evidence. A systematic review. J Clin Periodontol 2008, 35(Suppl. 8):106-116.
  • [2]American Academy of Periodontology: Glossary of Periodontal Terms. 4th edition. Chicago: American Academy of Periodontology; 2001.
  • [3]Hi W, Varanasi S, Strounina E: American Academy of Periodontology position paper: periodontal regeneration. J Periodontol 2005, 76:1601-1622.
  • [4]Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL: Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am 2010, 54:55-71.
  • [5]Karring TH: Concepts in Periodontal Tissue Regeneration. In Clinical Periodontology and Implant Dentistry. 5th edition. Edited by Lindhe J. New York: Wiley Blackwell; 2008:548-556.
  • [6]Albrektsson T, Johansson C: Osteoinduction, osteoconduction and osseoinegration. Eur Spine J 2001, 10:96-101.
  • [7]Zhou H, Lee J: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 2011, 7:2769-2781.
  • [8]Li Z, Yubao L, Aiping Y: Preparation and in vitro investigation of chitosan/nanohydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 2005, 16:213-219.
  • [9]Bouyer E, Gitzhofer F, Boulos MI: Morphological study of hydroxyapatite nanocrystals suspension. J Mater Sci Mater Med 2000, 11:523-531.
  • [10]Ngiam M, Nguyen LT, Liao S, Chan CK, Ramakrishna S: Biomimetic nanostructured materials — potential regulators for osteogenesis? Ann Acad Med Singapore 2011, 40:213-222.
  • [11]Lock J, Liu H: Nanomaterials enhance osteogenic differentiation of human mesenchimal stem cells similar to a short peptide of BMP-7. Int J Nanomed 2011, 6:2769-2777.
  • [12]Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000, 51:475-483.
  • [13]Webster TJ, Siegel RW, Bizios R: Osteoblast adhesion on nanophase ceramics. Biomaterials 1999, 20:1221-1227.
  • [14]Liu X, Zhao M, Lu J, Maa J, Wei J, Wei S: Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. In J Nanomed 2012, 7:1239-1250.
  • [15]Kasaj A, Willershausen B, Reichert C, Röhring B, Smeets R, Schmidt M: Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell prolifaration. J Oral Sci 2008, 50(Suppl. 3):279-285.
  • [16]Fragale A, Tartaglia M, Bernardini S, Di Stasi AMM, Di Rocco C, Velardi F: Decreased proliferation and altered differentiation in osteoblasts from genetically and clinically distinct craniosynostotic disorders. Am J Pathol 1999, 154(Suppl. 5):1465-1477.
  • [17]Taranta A, Brama M, Teti A, De Luca V, Scandurra R, Spera G, Agnusdei D, Termine JD, Migliaccio S: The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 2002, 30(Suppl. 2):368-376.
  • [18]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25:402-408.
  • [19]Pfaffl MW: A new mathematical model for relative quantification in real- time RT-PCR. Nucleic Acids Res 2001, 29:2002-2007.
  • [20]Kenney EB, Lekovic V, Han T, Carranza FA Jr, Dimitrijevic B: The use of a porous hydroxylapatite implant in periodontal defects. I. Clinical results after six months. J Periodontol 1985, 56(Suppl. 2):82-88.
  • [21]Ochsenbein C: Osseous resection in periodontology. J Periodontol 1958, 29:15-26.
  • [22]Carnevale G, Kaldahl WB: Osseous resective surgery. Periodontology 2000, 22:59-87.
  • [23]Zhou Z, Ren Y, Yang D, Nie J: Performance improvement of injectable poly(ethylene glycol) dimethacrylate-based hydrogels with finely dispersed hydroxyapatite. J Biomed Mater 2009, 4(Suppl. 3):3500-3507.
  • [24]Li J, Chen Y, Yin Y, Yao F, Yao K: Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 2007, 28(Suppl. 5):781-790.
  • [25]Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28(Suppl. 22):3338-3348.
  • [26]Murugan R, Ramakrishna S: Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 2004, 25(Suppl. 17):3829-3835.
  • [27]Wei G, Ma PX: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25(Suppl. 19):4749-4757.
  • [28]Giannobilie WV: Bone as a Tissue. In Clinical Periodontology and Implant Dentistry. 5th edition. Edited by Lindhe J. New York: Wiley Blackwell; 2008:86-95.
  • [29]Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD: Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res A 2007, 80(Suppl. 3):700-710.
  • [30]Yamashita D, Machigashira M, Miyamoto M, Takeuchi H, Noguchi K, Izumi Y, Ban S: Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 2009, 28(Suppl. 4):461-470.
  • [31]Klein MO, Bijelic A, Ziebart T, Koch F, Kämmerer PW, Wieland M, Konerding MA, Al-Nawas B: Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res 2011, 15(Suppl. 2):166-175.
  • [32]Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z: Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater 2003, 24(Suppl. 6):22-27.
  • [33]Thian ES, Huang J, Ahmad Z, Edirisinghe MJ, Jayasinghe SN, Ireland DC: Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteblast response. J Biomed Mater Res A 2008, 85:188-194.
  • [34]Kasaj A, Röhring B, Zafiropoulos GG, Willershausen B: Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of humen periodontal bony defects – a randomized controlled clinical trial: 6 months results. J Periodontol 2008, 79:394-400.
  • [35]Heinz B, Kasaj A, Teich M, Jepsen S: Clinical effects of nanocrystalline hydroxyapatite paste in the treatment of intrabony periodontal defects: a randomized controlled clinical study. Clin Oral Invest 2010, 14:525-531.
  文献评价指标  
  下载次数:240次 浏览次数:96次