期刊论文详细信息
BMC Genomics
Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation
Sophie Jeanson2  Régis Stentz5  Claire Shearman1  Sergine Even4  Udo Wegmann5  Gwenaëlle Le Gall5  Marina Cretenet3 
[1]Present address: 15 Albury Walk, Eaton, Norwich NR4 6JE, UK
[2]65 Rue de Saint-Brieuc, 35042 Rennes cedex, France
[3]Present address: Research Unit Aliments Bioprocédés Toxicologie Environnements (UR ABTE) E.A. 4651, Université de Caen Basse-Normandie, Esplanade de la paix, 14032 CAEN cedex, France
[4]AGROCAMPUS OUEST, UMR1253, F-35000 Rennes, France
[5]Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
关键词: Growth;    Acidification;    Redox potential;    Oxidative stress;    Stress response;    Metabolomics;    Transcriptomics;    Lactococcus lactis;   
Others  :  1089964
DOI  :  10.1186/1471-2164-15-1054
 received in 2014-01-22, accepted in 2014-11-18,  发布年份 2014
PDF
【 摘 要 】

Background

Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation.

Results

Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage.

Conclusions

Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L. lactis subsp. cremoris MG1363 in the presence of initially high levels of oxygen. This enables the cells to maintain key traits that are of great importance for industry, such as rapid acidification and reduction of the redox potential of the growth media.

【 授权许可】

   
2014 Cretenet et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128153217111.pdf 1074KB PDF download
Figure 4. 92KB Image download
Figure 3. 62KB Image download
Figure 2. 110KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent JR, Cano R, Chaillou S, Deutscher J, Gasson MJ, Van de Guchte M, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins RW, Kleerebezem M, Kok J, Kuipers OP, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, Van Sinderen D, Sorokin A, et al.: Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 2002, 82:29-58.
  • [2]Cocaign-Bousquet M, Even S, Lindley N, Loubière P: Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Appl Microbiol Biotechnol 2002, 60:24-32.
  • [3]Flahaut N, Wiersma A, Bunt B, Martens D, Schaap P, Sijtsma L, Santos V, Vos W: Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl Microbiol Biotechnol 2013, 97:8729-8739.
  • [4]Schleifer KH, Kraus J, Dvorak C, Kilpper-Balz R, Collins MD, Fischer W: Transfer of Streptococcus lactis and related Streptococci to the Genus Lactoccoccus gen. nov. Syst Appl Microbiol 1985, 6:183-195.
  • [5]Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A: The complete genome sequence of the lactioc acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 2001, 11:731-753.
  • [6]Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J: Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 2007, 189:3256-3270.
  • [7]Linares DM, Kok J, Poolman B: Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 2010, 192:5806-5812.
  • [8]Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A: Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 2001, 183:4509-4516.
  • [9]Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaïki L, Lamberet G, Sourice S, Duwat P, Gruss A: Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 2002, 82:263-269.
  • [10]Rezaiki L, Cesselin B, Yamamoto Y, Vido K, Van West E, Gaudu P, Gruss A: Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 2004, 53:1331-1342.
  • [11]Neves AR, Ramos A, Costa H, van Swam II, Hugenholtz J, Kleerebezem M, de Vos W, Santos H: Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: Kinetics of intracellular metabolite pools determined by In Vivo nuclear magnetic resonance. Appl Environ Microbiol 2002, 68:6332-6342.
  • [12]Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP: Time-resolved determination of the CcpA Regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 2007, 189:1366-1381.
  • [13]Carvalho AL, Turner DL, Fonseca LL, Solopova A, Catarino T, Kuipers OP, Eberhard OV, Neves AR, Santos H: Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools. PLoS ONE 2013, 8:e68470.
  • [14]de Jong A, Hansen ME, Kuipers OP, Kilstrup M, Kok J: The transcriptional and gene regulatory network of Lactococcus lactis MG1363 during growth in milk. PLoS ONE 2013, 8:e53085.
  • [15]Cretenet M, Laroute V, Ulve V, Jeanson S, Nouaille S, Even S, Piot M, Girbal L, Le Loir Y, Loubiere P, Lortal S, Cocaign-Bousquet M: Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Appl Environ Microbiol 2011, 77:247-257.
  • [16]Dressaire C, Redon E, Milhem H, Besse P, Loubiere P, Cocaign-Bousquet M: Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 2008, 9:343. BioMed Central Full Text
  • [17]Raynaud S, Perrin R, Cocaign-Bousquet M, Loubiere P: Metabolic and transcriptomic adaptation of Lactococcus lactis subsp. lactis biovar diacetylactis in response to autoacidification and temperature downshift in skim milk. Appl Environ Microbiol 2005, 71:8016-8023.
  • [18]Redon E, Loubiere P, Cocaign-Bousquet M: Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J Bacteriol 2005, 187:3589-3592.
  • [19]Xie Y, Chou L, Cutler A, Weimer B: DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 2004, 70:6738-6747.
  • [20]Abraham S, Cachon R, Jeanson S, Ebel B, Michelon D, Aubert C, Rojas C, Feron G, Beuvier E, Gervais P, De Conink J: A procedure for reproducible measurement of redox potential (Eh) in dairy processes. Dairy Sci Technol 2013, 93:1-16.
  • [21]Tengerdy R: Redox potential changes in 2-keto-L-gulonic acid fermentation. I-Correlation betweenredox potential and dissolved oxygen concentration. J Biotechnol Microbiol Technol Eng 1961, 3:241-253.
  • [22]Aubert C, Capelle N, Jeanson S, Eckert H, Diviès C, Cachon R: Le potentiel d’oxydoréduction et sa prise en compte dans les procédés d’utilisation des bactéries lactiques. Sci Aliments 2002, 22:177-187.
  • [23]Jeanson S, Hilgert N, Coquillard MO, Seukpanya C, Faiveley M, Neveu P, Abraham C, Georgescu V, Fourcassié P, Beuvier E: Milk acidification by Lactococcus lactis is improved by decreasing the level of dissolved oxygen rather than decreasing redox potential in the milk prior to inoculation. Int J Food Microbiol 2009, 131:75-81.
  • [24]Cachon R, Jeanson S, Aldarf M, Diviès C: Characterization of lactic starters based on acidification and reduction activities. Lait 2002, 82:281-288.
  • [25]Cesselin B, Derré-Bobillot A, Fernanadez A, Lamberet G, Lechardeur D, Yamamoto Y, Pedersen MB, Garrigues C, Gruss A, Gaudu P: Responses of Lactic Acid Bacteria to Oxidative Stress. In Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety edition. Edited by Tsakalidou E, Papadimitriou K. Springer Science; 2011:111-127.
  • [26]Duwat P, Cesselin B, Sourice S, Gruss A: Lactococcus lactis, a bacterial model for stress responses and survival. Int J Food Microbiol 2000, 55:83-86.
  • [27]Miyoshi A, Rochat T, Gratadoux J-J, LeLoir Y, Costa Oliveira S, Langella P, Azevedo V: Oxidative stress in Lactococcus lactis. Genet Mol Res 2003, 2:348-359.
  • [28]Neves AR, Pool WA, Kok J, Kuipers OP, Santos H: Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR. FEMS Microbiol Rev 2005, 29:531-554.
  • [29]Oliveira A, Nielsen J, Forster J: Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 2005, 5:39. BioMed Central Full Text
  • [30]Gasson MJ, Godon JJ, Pillidge CJ, Eaton TJ, Jury K, Shearman CA: Characterization and exploitation of conjugation in Lactococcus lactis. Int Dairy J 1995, 5:757-762.
  • [31]Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Møllgaard H, Gaudu P, Gruss A: Impact of Aeration and Heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 2008, 190:4903-4911.
  • [32]Tachon S, Brandsma JB, Yvon M: NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. Appl Environ Microbiol 2010, 76:1311-1319.
  • [33]Jensen NBS, Melchiorsen CR, Jokumsen KV, Villadsen J: Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 2001, 67:2677-2682.
  • [34]Kimoto-Nira H, Moriya N, Ohmori H, Suzuki C: Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain. J Food Protect 2014, 77:1161-1167.
  • [35]Jordan A, Pontis E, Aslund F, Hellman U, Gibert I, Reichard P: The ribonuclease reductase system of Lactococcus lactis. J Chem Biol 1996, 271:8779-8785.
  • [36]Torrents E, Eliasson R, Wolpher H, Graslund A, Reichard P: The anaerobic ribonucleotide reductase from Lactococcus lactis. J Chem Biol 2001, 276:33488-33494.
  • [37]Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P: Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. J Bacteriol 2005, 187:601-610.
  • [38]Nakano S, Küster-Schöck E, Grossman AD, Zuber P: Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 2003, 100:13603-13608.
  • [39]Li Y, Hugenholtz J, Abee T, Molenaar D: Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 2003, 69:5739-5745.
  • [40]Ravcheev DA, Li X, Latif H, Zengler K, Leyn SA, Korostelev YD, Kazakov AE, Novichkov PS, Osterman AL, Rodionov DA: Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor rex. J Bacteriol 2012, 194:1145-1157.
  • [41]Turner MS, Tan YP, Giffard PM: Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol 2007, 73:6144-6149.
  • [42]Frees D, Varmanen P, Ingmer H: Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 2001, 41:93-103.
  • [43]Smith WM, Dykes GA, Soomro AH, Turner MS: Molecular Mechanisms of Stress Resistance in Lactococcus Lactis. In Topics in Applied Microbiology and Microbial Biotechnology. Edited by Mendez-Vilas A. Badajoz, Spain: Formatex Reasearch Center; 2010:1106-1118.
  • [44]Rallu F, Gruss A, Maguin E: Lactococcus lactis and stress. Antonie Van Leeuwenhoek 1996, 70:243-251.
  • [45]Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley ND: Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Van Leeuwenhoek 1996, 70:253-267.
  • [46]Ganesan B, Stuart MR, Weimer BC: Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microbiol 2007, 73:2498-2512.
  • [47]Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C: CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2009, 72:779-794.
  • [48]Aminov RI: Horizontal gene exchange in environmental microbiota. Front Microbiol 2011, 2:158.
  • [49]Gasson MJ: Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 1983, 154:1-9.
  • [50]Wegmann U, Overweg K, Jeanson S, Gasson M, Shearman C: Molecular characterisation and structural instability of the industrially important composite metabolic plasmid pLP712. Microbiology 2012, 158:2936-2945.
  • [51]Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM: Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 2006, 78:4430-4442.
  • [52]R Development Core Team: R: A Langage and Environment for Statistical Computing. Vienna, Austria: R Fondation for Statistical Computing; 2008.
  • [53]Waters CM, Dunny GM: Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 2001, 183:5659-5667.
  • [54]Stentz R, Jury K, Eaton T, Parker M, Narbad A, Gasson M, Shearman C: Controlled expression of CluA in Lactococcus lactis and its role in conjugation. Microbiology 2004, 150:2503-2512.
  文献评价指标  
  下载次数:14次 浏览次数:13次