期刊论文详细信息
BMC Cell Biology
EGF-induced sodium influx regulates EGFR trafficking through HDAC6 and tubulin acetylation
Sigrid A. Langhans1  Soonmoon Yoo1  Alisa Litan1  Zhiqin Li1  Seung Joon Lee1 
[1]Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, 1701 Rockland Road, Wilmington 19803, DE, USA
关键词: EGFR;    acetylation;    tubulin;    sodium;    Na,K-ATPase;    Histone deacetylase;   
Others  :  1230183
DOI  :  10.1186/s12860-015-0070-8
 received in 2014-12-15, accepted in 2015-09-09,  发布年份 2015
PDF
【 摘 要 】

Background

Endocytosis of activated EGF receptor (EGFR) to specific endocytic compartments is required to terminate EGF signaling. Trafficking of EGFR relies on microtubule tracks that transport the cargo vesicle to their intermediate and final destinations and can be modulated through posttranslational modification of tubulin including acetylation. Na,K-ATPase maintains intracellular sodium homeostasis, functions as a signaling scaffold and interacts with EGFR. Na,K-ATPase also binds to and is regulated by acetylated tubulin but whether there is a functional link between EGFR, Na,K-ATPase and tubulin acetylation is not known.

Results

EGF-induced sodium influx regulates EGFR trafficking through increased microtubule acetylation. Increased sodium influx induced either by sodium ionophores or Na,K-ATPase blockade mimicked the EGF-induced effects on EGFR trafficking through histone deacetylase (HDAC) 6 inactivation and accumulation of acetylated tubulin. In turn, blocking sodium influx reduced tubulin acetylation and EGF-induced EGFR turnover. Knockdown of HDAC6 reversed the effect of sodium influx indicating that HDAC6 is necessary to modulate sodium-dependent tubulin acetylation.

Conclusions

These studies provide a novel regulatory mechanism to attenuate EGFR signaling in which EGF modulates EGFR trafficking through intracellular sodium-mediated HDAC6 inactivation and tubulin acetylation.

【 授权许可】

   
2015 Lee et al.

【 预 览 】
附件列表
Files Size Format View
20151104010943375.pdf 2319KB PDF download
Fig. 7. 26KB Image download
Fig. 6. 63KB Image download
Fig. 5. 92KB Image download
Fig. 4. 50KB Image download
Fig. 3. 46KB Image download
Fig. 2. 64KB Image download
Fig. 1. 100KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Gao YS, Hubbert CC, Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem. 2010; 285(15):11219-11226.
  • [2]Perdiz D, Mackeh R, Pous C, Baillet A. The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal. 2011; 23(5):763-771.
  • [3]Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005; 363:15-23.
  • [4]Spange S, Wagner T, Heinzel T, Kramer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009; 41(1):185-198.
  • [5]Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-458.
  • [6]Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011; 12(12):773-786.
  • [7]Deribe YL, Wild P, Chandrashaker A, Curak J, Schmidt MH, Kalaidzidis Y, Milutinovic N, Kratchmarova I, Buerkle L, Fetchko MJ et al.. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal. 2009; 2(102):ra84.
  • [8]Cereijido M, Contreras RG, Shoshani L, Larre I. The Na + −K + −ATPase as self-adhesion molecule and hormone receptor. Am J Physiol Cell Physiol. 2012; 302(3):C473-C481.
  • [9]Li Z, Xie Z. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch - Eur J Physiol. 2009; 457(3):635-644.
  • [10]Rajasekaran SA, Beyenbach KW, Rajasekaran AK. Interactions of tight junctions with membrane channels and transporters. Biochim Biophys Acta. 2008; 1778(3):757-769.
  • [11]Barwe SP, Anilkumar G, Moon SY, Zheng Y, Whitelegge JP, Rajasekaran SA, Rajasekaran AK. Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell. 2005; 16(3):1082-1094.
  • [12]Cai T, Wang H, Chen Y, Liu L, Gunning WT, Quintas LE, Xie ZJ. Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. J Cell Biol. 2008; 182(6):1153-1169.
  • [13]Haas M, Wang H, Tian J, Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K + −ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem. 2002; 277(21):18694-18702.
  • [14]Wolle D, Lee SJ, Li Z, Litan A, Barwe SP, Langhans SA. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Med. 2014; 3(5):1146-1158.
  • [15]Arce CA, Casale CH, Barra HS. Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J. 2008; 275(19):4664-4674.
  • [16]Moolenaar WH, Yarden Y, de Laat SW, Schlessinger J. Epidermal growth factor induces electrically silent Na + influx in human fibroblasts. J Biol Chem. 1982; 257(14):8502-8506.
  • [17]Rothenberg P, Glaser L, Schlesinger P, Cassel D. Epidermal growth factor stimulates amiloride-sensitive 22Na + uptake in A431 cells. Evidence for Na+/H+ exchange. J Biol Chem. 1983; 258(8):4883-4889.
  • [18]Casale CH, Alonso AD, Barra HS. Brain plasma membrane Na+, K + −ATPase is inhibited by acetylated tubulin. Mol Cell Biochem. 2001; 216(1–2):85-92.
  • [19]Wallace BA. Common structural features in gramicidin and other ion channels. Bioessays. 2000; 22(3):227-234.
  • [20]Mollenhauer HH, Morre DJ, Rowe LD. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta. 1990; 1031(2):225-246.
  • [21]Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 2010; 188(4):547-563.
  • [22]Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007; 27(13):3571-3583.
  • [23]Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006; 16(21):2166-2172.
  • [24]Gao YS, Hubbert CC, Lu J, Lee YS, Lee JY, Yao TP. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol Cell Biol. 2007; 27(24):8637-8647.
  • [25]Rose CR, Karus C. Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia. 2013; 61(8):1191-1205.
  • [26]Rabkin SW. The effect of alteration of extracellular Na + or Ca2+ and inhibition of Ca2+ entry, Na(+)-H+ exchange, and Na(+)-Ca2+ exchange by diltiazem, amiloride, and dichlorobenzamil on the response of cardiac cell aggregates to epidermal growth factor. Exp Cell Res. 1990; 188(2):262-266.
  • [27]Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 2007; 129(7):1351-1363.
  • [28]Lafarga V, Aymerich I, Tapia O, Mayor F, Penela P. A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J. 2012; 31(4):856-869.
  • [29]Zhu J, Coyne CB, Sarkar SN. PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and beta-catenin. EMBO J. 2011; 30(23):4838-4849.
  • [30]Williams KA, Zhang M, Xiang S, Hu C, Wu J-Y, Zhang S, Ryan M, Cox AD, Der CJ, Fang B et al.. Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration. J Biol Chem. 2013; 288(46):33156-33170.
  • [31]Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5(5):e10848.
  • [32]Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010; 7(9):493-507.
  • [33]Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT, Harari PM. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008; 27(28):3944-3956.
  • [34]Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB, Mendelsohn J, Fan Z. Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007; 67(17):8240-8247.
  • [35]Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PLoS One. 2013; 8(8):e71455.
  • [36]Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer. 2011; 11:144. BioMed Central Full Text
  • [37]Vanlandingham PA, Ceresa BP. Rab7 Regulates Late Endocytic Trafficking Downstream of Multivesicular Body Biogenesis and Cargo Sequestration. J Biol Chem. 2009; 284(18):12110-12124.
  文献评价指标  
  下载次数:69次 浏览次数:10次