期刊论文详细信息
BMC Genomics
Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin
Daniel H Buckley2  James R Doroghazi1 
[1] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA;Department of Crop and Soil Sciences, Cornell University, Ithaca, USA
关键词: Pan-genome;    Core genome;    Genome evolution;    Homologous recombination;    Bioprospecting;    Comparative genomics;    Streptomyces;   
Others  :  1127609
DOI  :  10.1186/1471-2164-15-970
 received in 2014-06-26, accepted in 2014-10-29,  发布年份 2014
PDF
【 摘 要 】

Background

Streptomyces are widespread bacteria that contribute to the terrestrial carbon cycle and produce the majority of clinically useful antibiotics. While interspecific genomic diversity has been investigated among Streptomyces, information is lacking on intraspecific genomic diversity. Streptomyces pratensis has high rates of homologous recombination but the impact of such gene exchange on genome evolution and the evolution of natural product gene clusters remains uncharacterized.

Results

We report draft genome sequences of four S. pratensis strains and compare to the complete genome of Streptomyces flavogriseus IAF-45-CD (=ATCC 33331), a strain recently reclassified to S. pratensis. Despite disparate geographic origins, the genomes are highly similar with 85.9% of genes present in the core genome and conservation of all natural product gene clusters. Natural products include a novel combination of carbapenem and beta-lactamase inhibitor gene clusters. While high intraspecies recombination rates abolish the phylogenetic signal across the genome, intraspecies recombination is suppressed in two genomic regions. The first region is centered on an insertion/deletion polymorphism and the second on a hybrid NRPS-PKS gene. Finally, two gene families accounted for over 25% of the divergent genes in the core genome. The first includes homologs of bldB (required for spore development and antibiotic production) while the second includes homologs of an uncharacterized protein with a helix-turn-helix motif (hpb). Genes from these families co-occur with fifteen pairs spread across the genome. These genes have evidence for co-evolution of co-localized pairs, supporting previous assertions that these genes may function akin to a toxin-antitoxin system.

Conclusions

S. pratensis genomes are highly similar with exceptional levels of recombination which erase phylogenetic signal among strains of the species. This species has a large core genome and variable terminal regions that are smaller than those found in interspecies comparisons. There is no geographic differentiation between these strains, but there is evidence for local linkage disequilibrium affecting two genomic regions. We have also shown further observational evidence that the DUF397-HTH (bldB and hpb) are a novel toxin-antitoxin pair.

【 授权许可】

   
2014 Doroghazi and Buckley; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221020427282.pdf 596KB PDF download
Figure 8. 107KB Image download
Figure 7. 75KB Image download
Figure 6. 20KB Image download
Figure 5. 93KB Image download
Figure 4. 54KB Image download
Figure 3. 76KB Image download
Figure 2. 25KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Bérdy J: Bioactive microbial metabolites. J Antibiot (Tokyo) 2005, 58(1):1-26.
  • [2]Rong X, Liu N, Ruan J, Huang Y: Multilocus sequence analysis of Streptomyces griseus isolates delineating intraspecific diversity in terms of both taxonomy and biosynthetic potential. Antonie Van Leeuwenhoek 2010, 98(2):237-248.
  • [3]Rong XY, Huang Y: Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 2010, 60:696-703.
  • [4]Guo Y, Zheng W, Rong X, Huang Y: A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 2008, 58(1):149-159.
  • [5]Rong XY, Huang Y: Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012, 35(1):7-18.
  • [6]Rong XY, Guo YP, Huang Y: Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp solvifaciens. Syst Appl Microbiol 2009, 32(5):314-322.
  • [7]Hopwood DA: Soil to genomics: the streptomyces chromosome. Annu Rev Genet 2006, 40:1-23.
  • [8]Doroghazi JR, Buckley DH: Widespread homologous recombination within and between Streptomyces species. ISME J 2010, 4(9):1136-1143.
  • [9]Flardh K: Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 2003, 49(6):1523-1536.
  • [10]Schwedock J, McCormick JR, Angert ER, Nodwell JR, Losick R: Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol 1997, 25(5):847-858.
  • [11]Hopwood DA, Glauert AM: Observations on the chromatinic bodies of Streptomyces coelicolor. J Biophys Biochem Cytol 1960, 8(1):257-265.
  • [12]Lin YS, Kieser HM, Hopwood DA, Chen CW: The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 1993, 10(5):923-933.
  • [13]Lin YS, Chen CW: Instability of artificially circularized chromosomes of Streptomyces lividans. Mol Microbiol 1997, 26(4):709-719.
  • [14]Volff JN, Viell P, Altenbuchner J: Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans. Mol Gen Genet 1997, 253(6):753-760.
  • [15]Weaver D, Karoonuthaisiri N, Tsai HH, Huang CH, Ho ML, Gai SN, Patel KG, Huang JQ, Cohen SN, Hopwood DA, Chen CW, Kao CM: Genome plasticity in Streptomyces: identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome. Mol Microbiol 2004, 51(6):1535-1550.
  • [16]Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 2003, 21(5):526-531.
  • [17]Hopwood DA, Wright HM: A plasmid of Streptomyces coelicolor carrying a chromosomal locus and its inter-specific transfer. The J Gen Microbiol 1973, 79(2):331-342.
  • [18]Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S: Genome sequence of the streptomycin-producing microorganism streptomyces griseus IFO 13350. J Bacteriol 2008, 190(11):4050-4060.
  • [19]Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, et al.: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417(6885):141-147.
  • [20]Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M: Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 2001, 98(21):12215-12235.
  • [21]Kharel MK, Nybo SE, Shepherd MD, Rohr J: Cloning and characterization of the ravidomycin and chrysomycin biosynthetic gene clusters. Chembiochem 2010, 11(4):523-532.
  • [22]Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR: Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 2014, 111(12):E1130-E1139.
  • [23]Rong X, Doroghazi JR, Cheng K, Zhang L, Buckley DH, Huang Y: Classification of Streptomyces phylogroup pratensis (Doroghazi and Buckley, 2010) based on genetic and phenotypic evidence, and proposal of Streptomyces pratensis sp. nov. Syst Appl Microbiol 2013, 36(6):401-407.
  • [24]Doroghazi JR, Buckley DH: A model for the effect of homologous recombination on microbial diversification. Genome Biol Evol 2011, 3:1349.
  • [25]Fraser C, Hanage WP, Spratt BG: Recombination and the nature of bacterial speciation. Science 2007, 315(5811):476-480.
  • [26]Ishaque M, Kluepfel D: Cellulase complex of a mesophilic Streptomyces strain. Can J Microbiol 1980, 26(2):183-189.
  • [27]El-Nakeeb MA, Lechevalier HA: Selective isolation of aerobic actinomycetes. Appl Microbiol 1963, 11(2):75-77.
  • [28]Ottow JCG: Rose Bengal as a selective aid in the isolation of fungi and actinomycetes from natural sources. Mycologia 1972, 64(2):304-315.
  • [29]Darling ACE, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [30]Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010, 11:119. BioMed Central Full Text
  • [31]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [32]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39(4):783-791.
  • [33]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [34]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [35]Alexa A, Rahnenfuhrer J: topGO: topGO: Enrichment analysis for Gene Ontology. R Package Version 2.18.0 2010., 28
  • [36]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [37]Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R: AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011, 39(suppl 2):W339-W346.
  • [38]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5(3):e9490.
  • [39]Huerta-Cepas J, Dopazo J, Gabaldón T: ETE: a python Environment for Tree Exploration. BMC Bioinform 2010, 11(1):24. BioMed Central Full Text
  • [40]Li R, Lloyd EP, Moshos KA, Townsend CA: Identification and characterization of the carbapenem MM 4550 and its gene cluster in streptomyces argenteolus ATCC 11009. Chem Bio Chem 2014, 15(2):320-331.
  • [41]Nunez LE, Mendez C, Brana AF, Blanco G, Salas JA: The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya. Chem Biol 2003, 10(4):301-311.
  • [42]Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW: A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 2014, 10(11):963-968.
  • [43]Boratyn GM, Schaffer A, Agarwala R, Altschul SF, Lipman DJ, Madden TL: Domain enhanced lookup time accelerated BLAST. Biol Direct 2012, 7(1):12. BioMed Central Full Text
  • [44]Hudson R, Kaplan N: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111(1):147-211.
  • [45]Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, Dyrek I, Achtman M: Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 1998, 95(21):12619-12624.
  • [46]Supply P, Warren RM, Bañuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C: Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 2003, 47(2):529-538.
  • [47]He J, Hertweck C: Biosynthetic origin of the rare nitroaryl moiety of the polyketide antibiotic aureothin: involvement of an unprecedented N-oxygenase. J Am Chem Soc 2004, 126(12):3694-3695.
  • [48]Lukjancenko O, Wassenaar TM, Ussery DW: Comparison of 61 sequenced escherichia coli genomes. Microb Ecol 2010, 60(4):708-720.
  • [49]Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Hotopp JCD, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V: Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010, 11(10):R107. BioMed Central Full Text
  • [50]Jacobsen A, Hendriksen RS, Aaresturp FM, Ussery DW, Friis C: The Salmonella enterica Pan-genome. Microb Ecol 2011, 62(3):487-504.
  • [51]Xu Z, Chen X, Li L, Li T, Wang S, Chen H, Zhou R: Comparative genomic characterization of actinobacillus pleuropneumoniae. J Bacteriol 2010, 192(21):5625-5636.
  • [52]Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W: Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 2010, 11(1):500. BioMed Central Full Text
  • [53]Lefebure T, Bitar PDP, Suzuki H, Stanhope MJ: Evolutionary dynamics of complete campylobacter Pan-genomes and the bacterial species concept. Genome Biol Evol 2010, 2:646-655.
  • [54]Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD: Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct 2011, 6:28. BioMed Central Full Text
  • [55]Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou F-X, Fourrier C, Guérineau M, Decaris B: Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 2006, 23(12):2361-2369.
  • [56]Yim G, Wang HH, FRS JD: Antibiotics as signalling molecules. Philos Transact Royal Society B: Biol Sci 2007, 362(1483):1195-1200.
  • [57]Champness WC: New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 1988, 170(3):1168-1174.
  • [58]Eccleston M, Ali RA, Seyler R, Westpheling J, Nodwell J: Structural and genetic analysis of the BldB protein of streptomyces coelicolor. J Bacteriol 2002, 184(15):4270-4276.
  • [59]Pope MK, Green B, Westpheling J: The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 1998, 180(6):1556-1562.
  • [60]Eccleston M, Willems A, Beveridge A, Nodwell JR: Critical residues and novel effects of overexpression of the streptomyces coelicolor developmental protein BldB: evidence for a critical interacting partner. J Bacteriol 2006, 188(23):8189-8195.
  • [61]Makarova KS, Wolf YI, Koonin EV: Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009, 4(1):19. BioMed Central Full Text
  文献评价指标  
  下载次数:119次 浏览次数:16次