期刊论文详细信息
BMC Evolutionary Biology
The mammalian PYHIN gene family: Phylogeny, evolution and expression
Katryn J Stacey3  Karin S Kassahn4  Mark A Ragan1  Tara L Roberts2  Matthew J Sweet3  Kate Schroder3  Michelle N Wykes2  Eva Z Curley5  Jasmyn A Cridland5 
[1]The University of Queensland, ARC Centre of Excellence in Bioinformatics, Brisbane, Qld, 4072, Australia
[2]Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld, 4006, Australia
[3]The University of Queensland, Brisbane, Qld, 4072, Australia
[4]The University of Queensland, Centre for Medical Genomics, Brisbane, Qld, 4072, Australia
[5]The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld, 4072, Australia
关键词: AIM2;    IFI16;    ALR;    cytosolic DNA;    HIN-200;    PYHIN;   
Others  :  1140579
DOI  :  10.1186/1471-2148-12-140
 received in 2012-02-21, accepted in 2012-07-27,  发布年份 2012
PDF
【 摘 要 】

Background

Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses.

Results

No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns.

Conclusions

The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.

【 授权许可】

   
2012 Cridland et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325044529532.pdf 1391KB PDF download
Figure 7. 103KB Image download
Fig. 2. 8KB Image download
Figure 5. 41KB Image download
Figure 4. 49KB Image download
Figure 3. 53KB Image download
Figure 2. 61KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Fig. 2.

Figure 7.

【 参考文献 】
  • [1]Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009, 458(7237):509-513.
  • [2]Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458(7237):514-518.
  • [3]Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G: An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009, 10(3):266-272.
  • [4]Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ: HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009, 323(5917):1057-1060.
  • [5]Schroder K, Tschopp J: The inflammasomes. Cell 2010, 140(6):821-832.
  • [6]Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA: The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010, 11(5):395-402.
  • [7]Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES: The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 2010, 11(5):385-393.
  • [8]Tsuchiya K, Hara H, Kawamura I, Nomura T, Yamamoto T, Daim S, Dewamitta SR, Shen Y, Fang R, Mitsuyama M: Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 2010, 185(2):1186-1195.
  • [9]Warren SE, Armstrong A, Hamilton MK, Mao DP, Leaf IA, Miao EA, Aderem A: Cutting edge: Cytosolic bacterial DNA activates the inflammasome via Aim2. J Immunol 2010, 185(2):818-821.
  • [10]Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S, Yamamoto T, Fernandes-Alnemri T, Yang R, Hernandez-Cuellar E, Dewamitta SR, Xu Y, Qu H, Alnemri ES, Mitsuyama M: Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 2011, 187(9):4890-4899.
  • [11]Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O'Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM: Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 2010, 107(21):9771-9776.
  • [12]Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B: IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 2011, 9(5):363-375.
  • [13]Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG: IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010, 11(11):997-1004.
  • [14]Ishikawa H, Ma Z, Barber GN: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461(7265):788-792.
  • [15]Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006, 7(1):40-48.
  • [16]Stetson DB, Medzhitov R: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006, 24(1):93-103.
  • [17]Tanaka Y, Chen ZJ: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 2012, 5(214):ra20.
  • [18]Cavlar T, Ablasser A, Hornung V: Induction of type I IFNs by intracellular DNA-sensing pathways. Immunol Cell Biol 2012, 90(5):474-482.
  • [19]Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 2011, 12(10):959-965.
  • [20]Deschamps S, Meyer J, Chatterjee G, Wang H, Lengyel P, Roe BA: The mouse Ifi200 gene cluster: genomic sequence, analysis, and comparison with the human HIN-200 gene cluster. Genomics 2003, 82(1):34-46.
  • [21]Choubey D, Snoddy J, Chaturvedi V, Toniato E, Opdenakker G, Thakur A, Samanta H, Engel DA, Lengyel P: Interferons as gene activators. Indications for repeated gene duplication during the evolution of a cluster of interferon-activatable genes on murine chromosome 1. J Biol Chem 1989, 264(29):17182-17189.
  • [22]Ludlow LE, Johnstone RW, Clarke CJ: The HIN-200 family: more than interferon-inducible genes? Exp Cell Res 2005, 308(1):1-17.
  • [23]Trapani JA, Browne KA, Dawson MJ, Ramsay RG, Eddy RL, Show TB, White PC, Dupont B: A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells. Immunogenetics 1992, 36(6):369-376.
  • [24]Briggs JA, Burrus GR, Stickney BD, Briggs RC: Cloning and expression of the human myeloid cell nuclear differentiation antigen: regulation by interferon alpha. J Cell Biochem 1992, 49(1):82-92.
  • [25]DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA, Meltzer PS, Trent JM: Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 1997, 15(4):453-457.
  • [26]Ding Y, Wang L, Su LK, Frey JA, Shao R, Hunt KK, Yan DH: Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer. Oncogene 2004, 23(26):4556-4566.
  • [27]Ludlow LE, Hii LL, Thorpe J, Newbold A, Tainton KM, Trapani JA, Clarke CJ, Johnstone RW: Cloning and characterisation of Ifi206: a new murine HIN-200 family member. J Cell Biochem 2008, 103(4):1270-1282.
  • [28]Zhang K, Kagan D, DuBois W, Robinson R, Bliskovsky V, Vass WC, Zhang S, Mock BA: Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility. Blood 2009, 114(14):2952-2960.
  • [29]Keating SE, Baran M, Bowie AG: Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol 2011, 32(12):574-581.
  • [30]Schattgen SA, Fitzgerald KA: The PYHIN protein family as mediators of host defenses. Immunol Rev 2011, 243(1):109-118.
  • [31]Li T, Diner BA, Chen J, Cristea IM: Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci USA 2012, 109(26):10558-10563.
  • [32]Liu C, Wang H, Zhao Z, Yu S, Lu YB, Meyer J, Chatterjee G, Deschamps S, Roe BA, Lengyel P: MyoD-dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol Cell Biol 2000, 20(18):7024-7036.
  • [33]Chen IF, Ou-Yang F, Hung JY, Liu JC, Wang H, Wang SC, Hou MF, Hortobagyi GN, Hung MC: AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther 2006, 5(1):1-7.
  • [34]Aglipay JA, Lee SW, Okada S, Fujiuchi N, Ohtsuka T, Kwak JC, Wang Y, Johnstone RW, Deng C, Qin J, Ouchi T: A member of the Pyrin family, IFI16, is a novel BRCA1-associated protein involved in the p53-mediated apoptosis pathway. Oncogene 2003, 22(55):8931-8938.
  • [35]Dermott JM, Gooya JM, Asefa B, Weiler SR, Smith M, Keller JR: Inhibition of growth by p205: a nuclear protein and putative tumor suppressor expressed during myeloid cell differentiation. Stem Cells 2004, 22(5):832-848.
  • [36]Lembo M, Sacchi C, Zappador C, Bellomo G, Gaboli M, Pandolfi PP, Gariglio M, Landolfo S: Inhibition of cell proliferation by the interferon-inducible 204 gene, a member of the Ifi 200 cluster. Oncogene 1998, 16(12):1543-1551.
  • [37]Dauffy J, Mouchiroud G, Bourette RP: The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol 2006, 79(1):173-183.
  • [38]Xin H, Pereira-Smith OM, Choubey D: Role of IFI 16 in cellular senescence of human fibroblasts. Oncogene 2004, 23(37):6209-6217.
  • [39]Luan Y, Lengyel P, Liu CJ: p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev 2008, 19(5–6):357-369.
  • [40]Asefa B, Klarmann KD, Copeland NG, Gilbert DJ, Jenkins NA, Keller JR: The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol Dis 2004, 32(1):155-167.
  • [41]Choubey D, Panchanathan R: Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett 2008, 119(1–2):32-41.
  • [42]Gariglio M, Mondini M, De Andrea M, Landolfo S: The multifaceted interferon-inducible p200 family proteins: from cell biology to human pathology. J Interferon Cytokine Res 2011, 31(1):159-172.
  • [43]Hertel L, Rolle S, De Andrea M, Azzimonti B, Osello R, Gribaudo G, Gariglio M, Landolfo S: The retinoblastoma protein is an essential mediator that links the interferon-inducible 204 gene to cell-cycle regulation. Oncogene 2000, 19(32):3598-3608.
  • [44]Asefa B, Dermott JM, Kaldis P, Stefanisko K, Garfinkel DJ, Keller JR: p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Lett 2006, 580(5):1205-1214.
  • [45]Choubey D, Lengyel P: Binding of an interferon-inducible protein (p202) to the retinoblastoma protein. J Biol Chem 1995, 270(11):6134-6140.
  • [46]Liu CJ, Chang E, Yu J, Carlson CS, Prazak L, Yu XP, Ding B, Lengyel P, Di Cesare PE: The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation. J Biol Chem 2005, 280(4):2788-2796.
  • [47]Wang H, Liu C, Lu Y, Chatterjee G, Ma XY, Eisenman RN, Lengyel P: The interferon- and differentiation-inducible p202a protein inhibits the transcriptional activity of c-Myc by blocking its association with Max. J Biol Chem 2000, 275(35):27377-27385.
  • [48]Ding B, Lengyel P: p204 protein is a novel modulator of ras activity. J Biol Chem 2008, 283(9):5831-5848.
  • [49]Choubey D, Gutterman JU: Inhibition of E2F-4/DP-1-stimulated transcription by p202. Oncogene 1997, 15(3):291-301.
  • [50]Min W, Ghosh S, Lengyel P: The interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos, and c-Jun activities. Mol Cell Biol 1996, 16(1):359-368.
  • [51]Fukushi M, Higuchi M, Oie M, Tetsuka T, Kasolo F, Ichiyama K, Yamamoto N, Katano H, Sata T, Fujii M: Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with human myeloid cell nuclear differentiation antigen induced by interferon alpha. Virus Genes 2003, 27(3):237-247.
  • [52]Xin H, D'Souza S, Fang L, Lengyel P, Choubey D: p202, an interferon-inducible negative regulator of cell growth, is a target of the adenovirus E1A protein. Oncogene 2001, 20(47):6828-6839.
  • [53]Cristea IM, Moorman NJ, Terhune SS, Cuevas CD, O'Keefe ES, Rout MP, Chait BT, Shenk T: Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol 2010, 84(15):7803-7814.
  • [54]Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H: The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 2007, 25:561-586.
  • [55]Albrecht M, Choubey D, Lengauer T: The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 2005, 327(3):679-687.
  • [56]Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, Xiao TS: Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 2012, 36(4):561-571.
  • [57]Liao JC, Lam R, Brazda V, Duan S, Ravichandran M, Ma J, Xiao T, Tempel W, Zuo X, Wang YX, Chirgadze NY, Arrowsmith CH: Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure 2011, 19(3):418-429.
  • [58]Brazda V, Coufal J, Liao JC, Arrowsmith CH: Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem Biophys Res Commun 2012, 422(4):716-720.
  • [59]Gribaudo G, Riera L, Hertel L, Landolfo S: In vitro and in vivo expression analysis of the interferon-inducible 203 gene. J Interferon Cytokine Res 1999, 19(2):129-136.
  • [60]Wang H, Chatterjee G, Meyer JJ, Liu CJ, Manjunath NA, Bray-Ward P, Lengyel P: Characteristics of three homologous 202 genes (Ifi202a, Ifi202b, and Ifi202c) from the murine interferon-activatable gene 200 cluster. Genomics 1999, 60(3):281-294.
  • [61]Fernando MM, de Smith AJ, Coin L, Morris DL, Froguel P, Mangion J, Blakemore AI, Graham RR, Behrens TW, Vyse TJ: Investigation of the HIN200 locus in UK SLE families identifies novel copy number variants. Ann Hum Genet 2011, 75(3):383-397.
  • [62]Tannenbaum CS, Major J, Ohmori Y, Hamilton TA: A lipopolysaccharide-inducible macrophage gene (D3) is a new member of an interferon-inducible gene cluster and is selectively expressed in mononuclear phagocytes. J Leukoc Biol 1993, 53(5):563-568.
  • [63]Zhang Y, Tian Q, Du Y, Cao H, Lengyel P, Kong W: Multiple splicing results in at least two p203 proteins that are expressed in the liver and down-regulated during liver regeneration. Front Biosci 2008, 13:2444-2451.
  • [64]Springer MS, Murphy WJ: Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev Camb Philos Soc 2007, 82(3):375-392.
  • [65]Prasad AB, Allard MW, Green ED: Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 2008, 25(9):1795-1808.
  • [66]Maetschke SR, Kassahn KS, Dunn JA, Han SP, Curley EZ, Stacey KJ, Ragan MA: A visual framework for sequence analysis using n-grams and spectral rearrangement. Bioinformatics 2010, 26(6):737-744.
  • [67]Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 2011, 334(6055):521-524.
  • [68]Gariglio M, Panico S, Cavallo G, Divaker C, Lengyel P, Landolfo S: Impaired transcription of the poly rI:rC- and interferon-activatable 202 gene in mice and cell lines from the C57BL/6 strain. Virology 1992, 187(1):115-123.
  • [69]Wei W, Clarke CJ, Somers GR, Cresswell KS, Loveland KA, Trapani JA, Johnstone RW: Expression of IFI 16 in epithelial cells and lymphoid tissues. Histochem Cell Biol 2003, 119(1):45-54.
  • [70]Gariglio M, Azzimonti B, Pagano M, Palestro G, De Andrea M, Valente G, Voglino G, Navino L, Landolfo S: Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interferon Cytokine Res 2002, 22(7):815-821.
  • [71]Fujiuchi N, Aglipay JA, Ohtsuka T, Maehara N, Sahin F, Su GH, Lee SW, Ouchi T: Requirement of IFI16 for the maximal activation of p53 induced by ionizing radiation. J Biol Chem 2004, 279(19):20339-20344.
  • [72]Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G, Kotzin BL: Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001, 15(3):435-443.
  • [73]Miranda RN, Briggs RC, Shults K, Kinney MC, Jensen RA, Cousar JB: Immunocytochemical analysis of MNDA in tissue sections and sorted normal bone marrow cells documents expression only in maturing normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes. Hum Pathol 1999, 30(9):1040-1049.
  • [74]Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009, 10(11):R130. BioMed Central Full Text
  • [75]Cordaux R, Batzer MA: The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009, 10(10):691-703.
  • [76]Stetson DB, Ko JS, Heidmann T, Medzhitov R: Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 2008, 134(4):587-598.
  • [77]Belancio VP, Roy-Engel AM, Deininger PL: All y'all need to know 'bout retroelements in cancer. Semin Cancer Biol 2010, 20(4):200-210.
  • [78]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
  • [79]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
  • [80]Bailey TL, Gribskov M: Methods and statistics for combining motif match scores. J Comput Biol 1998, 5(2):211-221.
  • [81]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39:W29-W37. Web Server issue
  • [82]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [83]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38:W695-W699. Web Server issue
  • [84]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [85]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.
  • [86]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.6. 2011. http://mesquiteproject.org webcite
  • [87]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [88]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25(7):1307-1320.
  • [89]Hordijk W, Gascuel O: Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 2005, 21(24):4338-4347.
  • [90]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 2006, 55(4):539-552.
  • [91]Costelloe EO, Stacey KJ, Antalis TM, Hume DA: Regulation of the plasminogen activator inhibitor-2 (PAI-2) gene in murine macrophages. Demonstration of a novel pattern of responsiveness to bacterial endotoxin. J Leukoc Biol 1999, 66(1):172-182.
  • [92]Sester DP, Trieu A, Brion K, Schroder K, Ravasi T, Robinson JA, McDonald RC, Ripoll V, Wells CA, Suzuki H, Hayashizaki Y, Stacey KJ, Hume DA, Sweet MJ: LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action. Immunobiology 2005, 210(2–4):97-107.
  • [93]Meadows NA, Sharma SM, Faulkner GJ, Ostrowski MC, Hume DA, Cassady AI: The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J Biol Chem 2007, 282(3):1891-1904.
  • [94]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  文献评价指标  
  下载次数:10次 浏览次数:25次