期刊论文详细信息
BMC Genomics
Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae, Galliformes)
Fumin Lei1  Yuan Huang2  Xuejuan Li2 
[1] Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China;Co-Innovation Center for Qinba Regions’ Sustainable Development, School of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
关键词: Ka/Ks;    Divergence time;    Phylogeny;    Crossoptilon;    Mitochondrial genome;   
Others  :  1122492
DOI  :  10.1186/s12864-015-1234-9
 received in 2014-03-05, accepted in 2015-01-12,  发布年份 2015
PDF
【 摘 要 】

Background

Phasianidae is a family of Galliformes containing 38 genera and approximately 138 species, which is grouped into two tribes based on their morphological features, the Pheasants and Partridges. Several studies have attempted to reconstruct the phylogenetic relationships of the Phasianidae, but many questions still remain unaddressed, such as the taxonomic status and phylogenetic relationships among Crossoptilon species. The mitochondrial genome (mitogenome) has been extensively used to infer avian genetic diversification with reasonable resolution. Here, we sequenced the entire mitogenomes of three Crossoptilon species (C. harmani, C. mantchuricum and C. crossoptilon) to investigate their evolutionary relationship among Crossoptilon species.

Results

The complete mitogenomes of C. harmani, C. mantchuricum and C. crossoptilon are 16682 bp, 16690 bp and 16680 bp in length, respectively, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a putative control region.C. auritum and C. mantchuricum are more closely related genetically, whereas C. harmani is more closely related to C. crossoptilon. Crossoptilon has a closer relationship with Lophura, and the following phylogenetic relationship was reconstructed: ((Crossoptilon + Lophura) + (Phasianus + Chrysolophus)). The divergence time between the clades C. harmani-C. crossoptilon and C. mantchuricum-C. auritum is consistent with the uplift of the Tibetan Plateau during the Tertiary Pliocene. The Ka/Ks analysis showed that atp8 gene in the Crossoptilon likely experienced a strong selective pressure in adaptation to the plateau environment.

Conclusions

C. auritum with C. mantchuricum and C. harmani with C. crossoptilon form two pairs of sister groups. The genetic distance between C. harmani and C. crossoptilon is far less than the interspecific distance and is close to the intraspecific distance of Crossoptilon, indicating that C. harmani is much more closely related to C. crossoptilon. Our mito-phylogenomic analysis supports the monophyly of Crossoptilon and its closer relationship with Lophura. The uplift of Tibetan Plateau is suggested to impact the divergence between C. harmani-C. crossoptilon clade and C. mantchuricum-C. auritum clade during the Tertiary Pliocene. Atp8 gene in the Crossoptilon species might have experienced a strong selective pressure for adaptation to the plateau environment.

【 授权许可】

   
2015 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214020538699.pdf 1023KB PDF download
Figure 2. 37KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lu X, Zheng GM, Gu BY: A preliminary investigation on taxonomy, distribution and evolutionary relationship of the eared pheasants, Crossoptilon. Acta Zool Sin 1998, 44(2):131-137.
  • [2]Cheng TH: A complete checklist of species and subspecies of the Chinese birds. Science Press, Beijing; 1994.
  • [3]Lu TC: The rare and endangered wild chicken in Chain. Fujian Science and Technology Press, Fuzhou; 1991.
  • [4]Cheng TH, Tan YK, Lu TC, Tang CG, Bao GJ, Li FL: Fauna of China. Aves, Vol. IV. Galliformes. Science Press, Beijing; 1978.
  • [5]Johnsgard PA: The Pheasants of the World. Oxford University Press, New York; 1986.
  • [6]Shi XD, Zhang ZW, Liu LY: Karyo types and G-banding patterns of three eared-pheasant (Crossoptilon) species. Acta Zool Sin 2001, 47(3):280-284.
  • [7]Gan YL, Lu TC, Liu RS, He FQ, Lu CL, Gan YL, Lu TC, Liu RS, He FQ, Lu CL: Observation on scanning electron microscope of eggshell of C. mantchuricumis, C. crossoptilon and C. auritum endemic pheasants in China. Acta Zool Sin 1992, 38(2):124-127.
  • [8]Zheng GM, Zhang W, Zhao XR: A comparative research on the hind limb muscles of eared pheasants, Crossoptilon. In The Study of Birds in China. Edited by Gao W. Science Press, Beijing; 1991:14-16.
  • [9]Lu TC, Liu RS, He FQ, Lu CL, Li GY: Ecology and systematic relationship of three species of the genus Crossoptilon. Sichuan J Zool 1989, 8:21-23.
  • [10]Liu RS, Guo YJ, Li FL, Hou LH: Study on the relationship among three species of the genus Crossoptilon by electraofocusing technique. Acta Zool Sin 1985, 31(2):206-213.
  • [11]Ludlow F, Kinnear NB: The birds of south-eastern Tibet. Ibis 1944, 86:348-389.
  • [12]Tsam CDM, Rao G, Ji JG, Suo LCR, Wan QH, Fang SG: Taxonomic status of Crossoptilon harmani and a phylogenetic study of the genus crossoptilon. Acta Zool Sin 2003, 28(2):173-179.
  • [13]Rothschild L: On the avifauna of Yunnan, with critical notes. Novit Zool 1926, 33:189-343.
  • [14]Delacour J: The Pheasant of the World. 2nd edition. World Pheasant Association and Spur Publications, London; 1977.
  • [15]Wu AP, Ding W, Zhang ZW, Zhan XJ: Phylogenetic relationship of the avian genus Crossoptilon. Acta Zool Sin 2005, 51(5):898-902.
  • [16]Yang C, Lei FM, Huang Y: Sequencing and Analysis of the Complete Mitochondrial Genome of Pseudopodoces humilis (Aves, Paridae). Zool Res 2010, 31(4):333-344.
  • [17]Sorenson MD: Avian mtDNA primers. 2003.
  • [18]Staden R, Beal KF, Bonfield JK: The Staden package, 1998. Methods Mol Biol 2000, 132:115-130.
  • [19]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [20]Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR: The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002, 3(2):1-31.
  • [21]Burk A, Douzery EJP, Springer MS: The secondary structure of mammalian mitochondrial 16S rRNA molecules: refinements based on a comparative phylogenetic approach. J Mamm Evol 2002, 9(3):225-252.
  • [22]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
  • [23]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 24:4876-4882.
  • [24]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MA; 2003.
  • [25]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform 2006, 22:2688-2690.
  • [26]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [27]Nylander JAA. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University;2004.
  • [28]Sorenson MD, Franzosa EA: TreeRot, version 3. Boston University, MA, Boston; 2007.
  • [29]Drummond AJ, Rambaut A: BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [30]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29(8):1969-1973.
  • [31]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [32]Dyke GJ, Gulas BE, Crowe TM: Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zool J Linnean Soc 2003, 137:227-244.
  • [33]Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, Hedderson TAJ, Randi E, Pereira SL, Wakeling J: Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 2006, 22:495-532.
  • [34]Tordoff HB, Macdonald JR: A new bird (family Cracidae) from the early Oligocene of South Dakota. Auk 1957, 74:174-184.
  • [35]Brodkorb P: Catalogue of fossil birds, part 2 (Anseriformes through Galliformes). Bull Florida State Mus Biol Sci 1964, 8:195-335.
  • [36]Mourer-Chauviré C: The Galliformes (Aves) of the Phosphorites du Quercy (France): systematics and biogeography. Natur Hist Mus Los Angeles County Sci Ser 1992, 36:67-95.
  • [37]Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J: KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinforma 2006, 4:259-263.
  • [38]Nei M, Kumar S: Molecular Evolution and Phylogenetics. Oxford University Press, New York; 2000.
  • [39]Yang Z: Computational Molecular Evolution. Oxford University Press, New York; 2006.
  • [40]Xu B, Yang Z: PAMLX: a graphical user interface for PAML. Mol Biol Evol 2013, 30:2723-2724.
  • [41]Bernsel A, Viklund H, Hennerdal A, Elofsson A: TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 2009, 37(W):W465-468.
  • [42]Wolstenholme DR: Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 1992, 141:173-216.
  • [43]Quinn TW: The genetic legacy of Mother Goose–phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol Ecol 1992, 1:105-117.
  • [44]Fumihito A, Miyake T, Sumi S-I, Takada M, Ohno S, Kondo N: One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci U S A 1994, 91:12505-12509.
  • [45]Fumihito A, Miyake T, Takada M, Ohno S, Kondo N: The genetic link between the Chinese bamboo partridge (Bambusicola thoracica) and the chicken and junglefowls of the genus Gallus. Proc Natl Acad Sci U S A 1995, 92:11053-11056.
  • [46]Ramirez V, Savoie P, Morais R: Molecular characterization and evolution of a duck mitochondrial genome. J Mol Evol 1993, 37:296-310.
  • [47]Douzery E, Randi E: The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic contents. Mol Biol Evol 1997, 14:1154-1166.
  • [48]Dufresne C, Mignotte F, Guéride M: The presence of tandem repeats and the initiation of replication in rabbit mitochondrial DNA. Eur J Biochem 1996, 235:593-600.
  • [49]Gemmell NJ, Western PS, Watson JM, Marshall-Graves JA: Evolution of the mammalian mitochondrial control region—comparisons of control region sequences between monotreme and therian mammals. Mol Biol Evol 1996, 13:798-808.
  • [50]Stewart DT, Baker AJ: Patterns of sequence variation in the mitochondrial D-loop region of shrews. Mol Biol Evol 1994, 11:9-21.
  • [51]Fumagalli L, Taberlet P, Favre L, Hausser J: Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 1996, 13:31-46.
  • [52]Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C: Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 1997, 205:125-140.
  • [53]L’Abbé DL, Duhaime JF, Lang BF, Morais R: The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J Biol Chem 1991, 266:10844-10850.
  • [54]Tang CZ: The analysis of system classification and geographical distribution of Crossoptilon. Acta Zool Sin 1998, 23:86-92.
  • [55]Wang N, Kimball RT, Braun EL, Liang B, Zhang ZW: Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae. PLoS One 2013, 8(5):e64312.
  • [56]Shen YY, Dai K, Cao X, Murphy RW, Shen XJ, Zhang YP: The Updated Phylogenies of the Phasianidae Based on Combined Data of Nuclear and Mitochondrial DNA. PLoS One 2014, 9(4):e95786.
  • [57]Wetmore A: Fossil birds from Mongolia and China. Am Aus Novit 1934, 711:1-16.
  • [58]Hou LH: Avian fossils of pleistocene from Zhoukoudian, China. Vertebrata Pal Asiatica 1982, 20:366-368.
  • [59]Yang YC, Li BY, Yin ZS, Zhang QS, Wang FB, Jing K, Cheng ZM: Geomorphology of Xizang (Tibet). Science Press, Beijing; 1983.
  • [60]Li BY, Wang FB: Basic characteristics of landforms in the northwest Yunnan and southwest Sichuan area. In The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau. Studies in Qinghai-Xizang (Tibet) Plateau Special Issue of Hengduan Mountains Scientific Expedition (II). Beijing Science & Technology Press, Beijing; 1986:175-183.
  • [61]Li JJ, Shi YF, Li BY: Uplift of the Qinghai–Xizang (Tibet) Plateau and Global Change. Lanzhou University Press, Lanzhou; 1995.
  • [62]Lei FM, Qu YH, Song G: Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr Zool 2014, 60(2):149-161.
  • [63]Jiang LC, Wang GC, Peng R, Peng QK, Zou FD: Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant (Lophura swinhoii). Gene 2014, 539(1):21-29.
  • [64]Wang FL, Chen JM, Lai RX: Studies on the ancient and modern geographical distribution of Brown-eared Pheasants. J Shanxi Univ 1985, 3:86-92.
  • [65]Zhang CA, Ding CQ: The distribution pattern of the Galliformes in China. Acta Zool Sin 2008, 33(2):317-323.
  • [66]Wu MX, Wu JG, Kuang MS, Heng T: Relationship between Geographic Distribution of Endemic Birds and Climatic Factors in China. Res Env Sci 2011, 24(4):409-420.
  • [67]Li JJ, Fang XM: Uplift of the Tibetan Plateau and environmental changes. Chinese Sci Bull 1999, 44:2117-2124.
  • [68]Elson JL, Turnbull DM, Howell N: Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 2004, 74:229-238.
  • [69]Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC: Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 2003, 100:171-176.
  • [70]Coskun PE, Ruiz-Pesini E, Wallace DC: Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc Natl Acad Sci U S A 2003, 100:2174-2176.
  • [71]Bhopal RS, Rafnsson SB: Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in South Asian populations? Int J Epidemiol 2009, 38:1072-1081.
  • [72]Gu ML, Wang YJ, Shi L, Zhang YB, Chu JY: Comparison on mitochondrial atp6, atp8 and cytb genes between Chinese Tibetans in three different zones: detecting the signature of natural selection on mitochondrial genome. Hereditas (Beijing) 2009, 31:147-152.
  • [73]Zhang HX, Luo QB, Sun J, Liu F, Wu G, Yu J, Wang WW: Mitochondrial genome sequences of Artemia tibetiana and A. urmiana: assessing molecular changes for high plateau adaptation. Sci China Life Sci 2013, 56:440-452.
  • [74]Shen YY, Shi P, Sun YB, Zhang YP: Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res 2009, 19(10):1760-1765.
  文献评价指标  
  下载次数:8次 浏览次数:7次