期刊论文详细信息
BMC Microbiology
Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae
María Mercedes Zambrano2  Lina Zárate2  Marcela Lozano2  Mónica G Huertas3  Diana P Cruz1 
[1] Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia;Molecular Genetics, Corporación Corpogen, Carrera 5 No. 66A-34, Bogotá, Colombia;Department of Biological Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
关键词: c-di-GMP;    Phosphodiesterase;    Diguanylate cyclase;    Biofilm;    Klebsiella pneumoniae;   
Others  :  1221825
DOI  :  10.1186/1471-2180-12-139
 received in 2012-06-19, accepted in 2012-06-25,  发布年份 2012
PDF
【 摘 要 】

Background

Klebsiella pneumoniae can be found in environmental habitats as well as in hospital settings where it is commonly associated with nosocomial infections. One of the factors that contribute to virulence is its capacity to form biofilms on diverse biotic and abiotic surfaces. The second messenger Bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) is a ubiquitous signal in bacteria that controls biofilm formation as well as several other cellular processes. The cellular levels of this messenger are controlled by c-di-GMP synthesis and degradation catalyzed by diguanylate cyclase (DGC) and phophodiesterase (PDE) enzymes, respectively. Many bacteria contain multiple copies of these proteins with diverse organizational structure that highlight the complex regulatory mechanisms of this signaling network. This work was undertaken to identify DGCs and PDEs and analyze the domain structure of these proteins in K. pneumoniae.

Results

A search for conserved GGDEF and EAL domains in three sequenced K. pneumoniae genomes showed that there were multiple copies of GGDEF and EAL containing proteins. Both single domain and hybrid GGDEF proteins were identified: 21 in K. pneumoniae Kp342, 18 in K. pneumoniae MGH 78578 and 17 in K. pneumoniae NTUH-K2044. The majority had only the GGDEF domain, most with the GGEEF motif, and hybrid proteins containing both GGDEF and EAL domains were also found. The I site for allosteric control was identified only in single GGDEF domain proteins and not in hybrid proteins. EAL-only proteins, containing either intact or degenerate domains, were also identified: 15 in Kp342, 15 in MGH 78578 and 10 in NTUH-K2044. Several input sensory domains and transmembrane segments were identified, which together indicate complex regulatory circuits that in many cases can be membrane associated.

Conclusions

The comparative analysis of proteins containing GGDEF/EAL domains in K. pneumoniae showed that most copies were shared among the three strains and that some were unique to a particular strain. The multiplicity of these proteins and the diversity of structural characteristics suggest that the c-di-GMP network in this enteric bacterium is highly complex and reflects the importance of having diverse mechanisms to control cellular processes in environments as diverse as soils or plants and clinical settings.

【 授权许可】

   
2012 Cruz et al.; BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804010049111.pdf 1411KB PDF download
Figure 3 . 161KB Image download
Figure 2 . 45KB Image download
Figure 1 . 45KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

【 参考文献 】
  • [1]Hoyos-Orrego SR-RO, Hoyos-Posada C, Mesa-Restrepo C, Alfaro-Velásquez M: Características clínicas, epidemiológicas y de susceptibilidad a los antibióticos en casos de bacteriemia por Klebsiella pneumoniae en neonatos. Rev CES Med 2007, 21(2):31-39.
  • [2]Struve C, Krogfelt KA: Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environ Microbiol 2004, 6(6):584-590.
  • [3]Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11(4):589-603.
  • [4]Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, von Gottberg A, Goossens H, Wagener MM, Benedi VJ: Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis 2007, 13(7):986-993.
  • [5]Marschall J, Fraser VJ, Doherty J, Warren DK: Between community and hospital: healthcare-associated gram-negative bacteremia among hospitalized patients. Infect Control Hosp Epidemiol 2009, 30(11):1050-1056.
  • [6]Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, et al.: Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 2008, 4(7):e1000141.
  • [7]Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C: The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol 2008, 10(3):685-701.
  • [8]Boddicker JD, Anderson RA, Jagnow J, Clegg S: Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 2006, 74(8):4590-4597.
  • [9]Balestrino D, Haagensen JA, Rich C, Forestier C: Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 2005, 187(8):2870-2880.
  • [10]Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A: Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol 2003, 154(1):9-16.
  • [11]Johnson JG, Clegg S: Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 2010, 192(15):3944-3950.
  • [12]Langstraat J, Bohse M, Clegg S: Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 2001, 69(9):5805-5812.
  • [13]Barends TR, Hartmann E, Griese JJ, Beitlich T, Kirienko NV, Ryjenkov DA, Reinstein J, Shoeman RL, Gomelsky M, Schlichting I: Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 2009, 459(7249):1015-1018.
  • [14]Johnson JG, Murphy CN, Sippy J, Johnson TJ, Clegg S: Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol 2011, 193(14):3453-3460.
  • [15]Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, et al.: MrkH, a novel c-di-GMP-dependent transcriptional activator, controls klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 2011, 7(8):e1002204.
  • [16]Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009, 7(10):724-735.
  • [17]Hengge R: Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009, 7(4):263-273.
  • [18]Cotter PA, Stibitz S: c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 2007, 10(1):17-23.
  • [19]Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, et al.: Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 2009, 191(14):4492-4501.
  • [20]Galperin MY: Bacterial signal transduction network in a genomic perspective. Environ Microbiol 2004, 6(6):552-567.
  • [21]Martoglio B, Dobberstein B: Signal sequences: more than just greasy peptides. Trends Cell Biol 1998, 8(10):410-415.
  • [22]Walter P, Johnson AE: Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 1994, 10:87-119.
  • [23]Galperin MY, Nikolskaya AN, Koonin EV: Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 2001, 203(1):11-21.
  • [24]Tamayo R, Pratt JT, Camilli A: Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 2007, 61:131-148.
  • [25]Mascher T, Helmann JD, Unden G: Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006, 70(4):910-938.
  • [26]Ryan RP, Fouhy Y, Lucey JF, Dow JM: Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 2006, 188(24):8327-8334.
  • [27]Jenal U, Malone J: Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 2006, 40:385-407.
  • [28]Ho YS, Burden LM, Hurley JH: Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 2000, 19(20):5288-5299.
  • [29]Pappalardo L, Janausch IG, Vijayan V, Zientz E, Junker J, Peti W, Zweckstetter M, Unden G, Griesinger C: The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli. J Biol Chem 2003, 278(40):39185-39188.
  • [30]Zhulin IB, Nikolskaya AN, Galperin MY: Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol 2003, 185(1):285-294.
  • [31]Anantharaman V, Aravind L: The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem Sci 2001, 26(10):579-582.
  • [32]Gomelsky M, Klug G: BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 2002, 27(10):497-500.
  • [33]Seshasayee AS, Fraser GM, Luscombe NM: Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucleic Acids Res 2010, 38(18):5970-5981.
  • [34]Newell PD, Monds RD, O'Toole GA: LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 2009, 106(9):3461-3466.
  • [35]Christen M, Christen B, Folcher M, Schauerte A, Jenal U: Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 2005, 280(35):30829-30837.
  • [36]Grant JR, Stothard P: The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008, 36(Web Server issue):W181-W184.
  • [37]Dutta C, Pan A: Horizontal gene transfer and bacterial diversity. J Biosci 2002, 27(1 Suppl 1):27-33.
  • [38]Cummings L, Riley L, Black L, Souvorov A, Resenchuk S, Dondoshansky I, Tatusova T: Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes. FEMS Microbiol Lett 2002, 216(2):133-138.
  • [39]Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2011, 39(Database issue):D52-D57.
  • [40]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al.: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-D229.
  • [41]Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [42]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-D222.
  • [43]Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 1998, 95(11):5857-5864.
  • [44]Gomi MSM, Mitaku S: High performance system for signal peptide prediction: SOSUIsignal. Chem-Bio Informatics Journal 2004, 4(4):142-147.
  • [45]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [46]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
  • [47]Pearson WR: Effective protein sequence comparison. Methods Enzymol 1996, 266:227-258.
  • [48]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [49]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
  文献评价指标  
  下载次数:28次 浏览次数:10次