期刊论文详细信息
BMC Research Notes
Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells
Rashed Noor1  Ifra Tun Nur1  Md. Mohibul Hassan Afrad1  Jannatun Tahera1  Md. Sakil Munna1 
[1] Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka 1217, Bangladesh
关键词: Viable but non culturable (VBNC) cells;    Colony forming units (CFUs);    Bacillus spp.;    High temperature stress;   
Others  :  1232831
DOI  :  10.1186/s13104-015-1631-9
 received in 2014-11-20, accepted in 2015-10-26,  发布年份 2015
PDF
【 摘 要 】

Background

The bacterial stressed state upon temperature raise has widely been observed especially in Escherichia coli cells. The current study extended such physiological investigation on Bacillus spp. SUBB01 under aeration at 100 rpm on different culture media along with the high temperature exposure at 48, 50, 52, 53 and 54 °C. Bacterial growth was determined through the enumeration of the viable and culturable cells; i.e., cells capable of producing the colony forming units on Luria–Bertani and nutrient agar plates up to 24 h. Microscopic experiments were conducted to scrutinize the successive physiological changes. Suppression of bacterial growth due to the elevated heat was further confirmed by the observation of non-viability through spot tests.

Results

As expected, a quick drop in both cell turbidity and colony forming units (~10 4 ) along with spores were observed after 12–24 h of incubation period, when cells were grown at 54 °C in both Luria–Bertani and nutrient broth and agar. The critical temperature (the temperature above which it is no longer possible to survive) of Bacillus spp. SUBB01 was estimated to be 53 °C. Furthermore, a positive impact was observed on the inhibited E. coli SUBE01 growth at 45 and 47 °C, upon the supplementation of the extracellular fractions of Bacillus species into the growing culture.

Conclusions

Overall the present analysis revealed the conversion of the culturable cells into the viable and nonculturable (VBNC) state as a result of heat shock response in Bacillus spp. SUBB01 and the cellular adaptation at extremely high temperature.

【 授权许可】

   
2015 Munna et al.

【 预 览 】
附件列表
Files Size Format View
20151116065651390.pdf 7096KB PDF download
Fig.6. 21KB Image download
Fig.5. 67KB Image download
Fig.4. 71KB Image download
Fig.3. 77KB Image download
Fig.2. 30KB Image download
Fig.1. 42KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Givskov M, Eberl L, Moller S, Poulsen LK, Molin S: Responses to nutrient starvation in Pseudomonas Putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol 1994, 176:7-14.
  • [2]Kabir MS, Yamashita D, Noor R, Yamada M: Effect of σ S on σ E -directed cell lysis in Escherichia coli early stationary phase. J Mol Microbiol Biotechnol 2004, 8:189-194.
  • [3]Nystrom T: Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005, 24:1311-1317.
  • [4]Den Besten HMW, Mols M, Moezelaar R, Zwietering MH, Abee T: Phenotypic and transcriptomic analyses of mildly and severely salt-stressed Bacillus cereus ATCC 14579 cells. Appl Environ Microbiol 2009, 75:4111-4119.
  • [5]Noor R, Murata M, Yamada M: Oxidative stress as a trigger for growth phase-specific sigma-E dependent cell lysis in Escherichia coli. J Mol Microb Biotech 2009, 17:177-187.
  • [6]Noor R, Murata M, Nagamitsu H, Klein G, Rain S, Yamada M: Dissection of sigma-E dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst Ppid. Genes Cells 2009, 14:885-899.
  • [7]Ju KS, Parales RE: Nitro-aromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol R 2010, 74:250-272.
  • [8]Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 2011, 9:803-816.
  • [9]Kivisaar M: Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol Microbiol 2011, 82:265-268.
  • [10]Deepika G, Karunakaran E, Hurley CR, Biggs CA, Charalampopoulos D: Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG. Microb Cell Fact 2012, 11:116. BioMed Central Full Text
  • [11]Huillet E, Tempelars MH, Andre-Leroux G, Wanapaisan P, Bridoux L, Makhzamis S, Panbangred W, Martin-Verstraete I, Abee T, Lereclus D: PIcRa, a new quorum-sensing regulator from Bacillus cereus, play a role in oxidative stress response and cystein metabolism in stationary phase. PLoS One 2012, 7:e51047.
  • [12]Murata M, Noor R, Nagamitsu H, Tanaka S, Yamada M: Novel pathway directed by sigma-E to cause cell lysis in Escherichia coli. Genes Cells 2012, 17:234-247.
  • [13]Noor R, Islam Z, Munshi SH, Rahman F: Influence of temperature on Escherichia coli growth in different culture media. J Pure Appl Microbiol 2013, 7:899-904.
  • [14]Den Besten HMW, Effraimidou S, Abee T: Catalase activity as a biomarker for mild stress-induced robustness in Bacillus weihenstephanensis. Appl Environ Microbiol 2013, 79:57-62.
  • [15]Shimizu K: Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 2013, 4:1-35.
  • [16]Price CW, Fawcett P, Ceremonie H, Su N, Murphy CK, Youngman P: Genomewide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 2001, 41:757-774.
  • [17]Phillips ZE, Strauch MA: Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 2002, 59:392-402.
  • [18]Ananthan J, Goldberg AL, Voellmy R: Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986, 232:522-524.
  • [19]Sarniguet A, Kraus J, Henkels MD, Muehlchen AD, Loper JE: The sigma factor σ S affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci USA 1995, 92:12255-12259.
  • [20]Mayr B, Kaplan T, Lechner S, Scherer S: Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol 1996, 178:2916-2925.
  • [21]Ramos-Gonzalez MI, Molin S: Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 1998, 180:3421-3431.
  • [22]Jorgensen F, Bally M, Chapon-Herve V, Michel G, Lazdunski A, et al.: RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 1999, 145:835-844.
  • [23]Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SHE, et al.: Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 1999, 181:3890-3897.
  • [24]Whistler CA, Stockwell VO, Loper JE: Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2000, 66:2718-2725.
  • [25]Miller CD, Kim YC, Anderson AJ: Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can J Microbiol 2001, 47:41-48.
  • [26]Miller CD, Mortensen WS, Braga GUL, Anderson AJ: The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-UV in sunlight. Curr Microbiol 2001, 43:374-377.
  • [27]Periago PM, Schaik WV, Abee T, Wouters JA: Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl Environ Microbiol 2002, 68:3486-3495.
  • [28]Stockwell VO, Loper JE: The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5. Microbiology 2005, 151:3001-3009.
  • [29]Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D: Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 2005, 243:251-258.
  • [30]Akerfelt M, Morimoto RI, Sistonen L: Heat shock factors: integrators of cell stress, development, and lifespan. Nat Rev Mol Cell Biol 2010, 11:545-555.
  • [31]Morimoto RI: The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 2012, 76:91-99.
  • [32]Munna MS, Nur IT, Rahman T, Noor R: Influence of exogenous oxidative stress on Escherichia coli cell growth, viability and morphology. Am J BioSci 2013, 1:59-62.
  • [33]Munna MS, Tamanna S, Afrin MR, Sharif GA, Mazumder C, et al.: Influence of aeration speed on bacterial colony forming unit (CFU) formation capacity. Am J Microbiol Res 2014, 2:47-51.
  • [34]Nur IT, Munna MS, Noor R: Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp. and Salmonella spp. Turk J Biol 2014, 38:502-509.
  • [35]Yamada M, Noor R, Nagamitsu H, Murta M. The higher temperature, the more oxidative stress and lysis in Escherichia coli. In: The 3rd International Conference on Fermentation Technology for Value Added Agricultural Products; Khon Kaen; 2009.
  • [36]Nitta T, Nagamitsu H, Murata M, Izu H, Yamada M: Function of the sigma-E regulon in dead-cell lysis in stationary phase Escherichia coli. J Bacteriol 2000, 182:5231-5237.
  • [37]Cappuccino JG, Shermen N: Microbiology; laboratory manuals. Benjamin/Cummings Publishing Company Incorporated, San Francisco; 1996.
  • [38]Hecker M, Volker U: General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 2001, 44:35-91.
  • [39]Price CW: General stress response in Bacillus Subtilis and its closest relatives: From Genes to Cells. Washington, DC. Am Soc Microbiol 2002: 369–84.
  • [40]Helmann JD, Wu MFW, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C: The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 2003, 185:243-253.
  • [41]Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M: Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 2001, 183:5617-5631.
  • [42]Hecker M, Pane-Farre J, Volker U: SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 2007, 61:215-236.
  • [43]Hardwick SW, Pané-Farré J, Delumeau O, Marles-Wright J, Hecker M, Lewis RJ: Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis. Am Soc Biochem Mol Biol 2007, 283:11562-11572.
  • [44]Nannapaneni P, Hertwig F, Depke M, Hecker M, Mäder U, Volker U, Steil L, van Hijum SA: Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. Microbiology 2012, 158:696-707.
  • [45]Schumann W: The Bacillus subtilis heat shock stimulon. Cell Stress Chaperone 2003, 8:207-217.
  • [46]Versteeg S, Escher A, Wende A, Wiegert T, Schumann W: Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. J Bacteriol 2003, 185:466-474.
  • [47]Munna MS, Humayun S, Noor R: Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Res Notes 2015, 8:369. BioMed Central Full Text
  • [48]Noor R: Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SpringerPlus 2015, 4:599. BioMed Central Full Text
  文献评价指标  
  下载次数:52次 浏览次数:9次