期刊论文详细信息
BMC Genomics
Characterizing the neurotranscriptomic states in alternative stress coping styles
John Godwin2  Melissa S. Lamm2  Ryan Y. Wong1 
[1] Current Address: Department of Biology, University of Nebraska at Omaha, Omaha NE 68182, USA;Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh NC 27695-7614, USA
关键词: Gene coexpression network;    RNA-sequencing;    Transcriptome;    Danio rerio;    Brain;    Anxiety;    Reactive;    Proactive;    Coping style;    Stress;   
Others  :  1210195
DOI  :  10.1186/s12864-015-1626-x
 received in 2015-02-16, accepted in 2015-05-08,  发布年份 2015
PDF
【 摘 要 】

Background

Animals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment.

Results

Using RNA-sequencing we quantified the basal transcriptomes from the brains of wild-derived zebrafish lines selectively bred to exhibit the proactive or reactive stress coping style. We identified 1953 genes that differed in baseline gene expression levels. Weighted gene coexpression network analyses identified one gene module associated with line differences. Together with our previous pharmacological experiment, we identified a core set of 62 genes associated with line differences. Gene ontology analyses reveal that many of these core genes are implicated in neurometabolism (e.g. organic acid biosynthetic and fatty acid metabolic processes).

Conclusions

Our results show that proactive and reactive stress coping individuals display distinct basal neurotranscriptomic states. Differences in baseline expression of select genes or regulation of specific gene modules are linked to the magnitude of the behavioral response and the display of a coping style, respectively. Our results expand the molecular mechanisms of stress coping from one focused on the neurotransmitter systems to a more complex system that involves an organism’s capability to handle neurometabolic loads and allows for comparisons with other animal taxa to uncover potential conserved mechanisms.

【 授权许可】

   
2015 Wong et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603025150253.pdf 699KB PDF download
Fig. 5. 143KB Image download
Fig. 4. 20KB Image download
Fig. 3. 33KB Image download
Fig. 2. 11KB Image download
Fig. 1. 11KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol. 2010; 31(3):307-21.
  • [2]Overli O, Sorensen C, Pulman KG, Pottinger TG, Korzan W, Summers CH et al.. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev. 2007; 31(3):396-412.
  • [3]Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol. 2004; 19(7):372-8.
  • [4]American Psychiatric A. Diagnostic criteria from DSM-IV-TR. American Psychiatric Association, Washington, D.C; 2000.
  • [5]Koolhaas JM, de Boer SF, Buwalda B, van Reenen K. Individual variation in coping with stress: a multidimensional approach of ultimate and proximate mechanisms. Brain Behav Evol. 2007; 70(4):218-26.
  • [6]Rey S, Boltana S, Vargas R, Roher N, MacKenzie S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol Ecol. 2013; 22(24):6100-15.
  • [7]Grunwald DJ, Eisen JS. Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet. 2002; 3(9):717-24.
  • [8]Peterson RT, Macrae CA. Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol. 2012; 52:433-53.
  • [9]Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res. 2010; 214(2):332-42.
  • [10]Clark KJ, Boczek NJ, Ekker SC. Stressing zebrafish for behavioral genetics. Rev Neurosci. 2011; 22(1):49-62.
  • [11]Steenbergen PJ, Richardson MK, Champagne DL. The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(6):1432-51.
  • [12]Gerlai R. Using zebrafish to unravel the genetics of complex brain disorders. Curr Top Behav Neurosci. 2012; 12:3-24.
  • [13]Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A. Measuring anxiety in zebrafish: a critical review. Behav Brain Res. 2010; 214(2):157-71.
  • [14]Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 2012; 62(1):135-43.
  • [15]Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M et al.. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446):498-503.
  • [16]Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014; 37(5):264-78.
  • [17]Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Frontiers in neural circuits. 2013; 7:63.
  • [18]Friedrich RW, Jacobson GA, Zhu P. Circuit neuroscience in zebrafish. Current biology : CB. 2010; 20(8):R371-81.
  • [19]Wong RY, Perrin F, Oxendine SE, Kezios ZD, Sawyer S, Zhou LR et al.. Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour. 2012; 149(10–12):1205-40.
  • [20]Drew RE, Settles ML, Churchill EJ, Williams SM, Balli S, Robison BD. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics. 2012; 13:323. BioMed Central Full Text
  • [21]Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002; 42(3):517-25.
  • [22]Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997; 77(3):591-625.
  • [23]Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K et al.. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(6):1421-31.
  • [24]Wong RY, Oxendine SE, Godwin J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics. 2013; 14:348. BioMed Central Full Text
  • [25]Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM et al.. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc. 2010; 5(11):1786-99.
  • [26]Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF et al.. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009; 205(1):38-44.
  • [27]Coppens CM, de Boer SF, Koolhaas JM. Coping styles and behavioural flexibility: towards underlying mechanisms. Philos Trans R Soc Lond B Biol Sci. 2010; 365(1560):4021-8.
  • [28]Sorensen C, Johansen IB, Overli O. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol. 2013; 181:25-34.
  • [29]Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008; 9:559. BioMed Central Full Text
  • [30]Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011; 7(1): Article ID e1001057
  • [31]Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001; 125(1–2):279-84.
  • [32]Godwin J, Sawyer S, Perrin F, Oxendine SE, Kezios ZD: Adapting the Open Field Test to Assess Anxiety-Related Behavior in Zebrafish. In: Zebrafish Protocols for Neurobehavioral Research. Edited by Kalueff AV, Michael A: Humana Press; 2012.
  • [33]Gomes Vde C, Hassan W, Maisonnette S, Johnson LR, Ramos A, Landeira-Fernandez J. Behavioral evaluation of eight rat lines selected for high and low anxiety-related responses. Behav Brain Res. 2013; 257:39-48.
  • [34]Landgraf R, Wigger A. High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet. 2002; 32(5):301-14.
  • [35]Overli O, Pottinger TG, Carrick TR, Overli E, Winberg S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J Exp Biol. 2002; 205(Pt 3):391-5.
  • [36]Milner LC, Crabbe JC. Three murine anxiety models: results from multiple inbred strain comparisons. Genes Brain Behav. 2008; 7(4):496-505.
  • [37]Bouwknecht JA, Paylor R. Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Brain Res. 2002; 136(2):489-501.
  • [38]Maximino C, Puty B, Matos Oliveira KR, Herculano AM. Behavioral and neurochemical changes in the zebrafish leopard strain. Genes Brain Behav. 2013; 12(5):576-82.
  • [39]Plyusnina IZ, Solov'eva MY, Oskina IN. Effect of domestication on aggression in gray Norway rats. Behav Genet. 2011; 41(4):583-92.
  • [40]Kalcounis-Rueppell MC, Petric R, Briggs JR, Carney C, Marshall MM, Willse JT et al.. Differences in ultrasonic vocalizations between wild and laboratory California mice (Peromyscus californicus). PLoS One. 2010; 5(4): Article ID e9705
  • [41]Whiteley AR, Bhat A, Martins EP, Mayden RL, Arunachalam M, Uusi-HeikkilÄ S et al.. Population genomics of wild and laboratory zebrafish (Danio rerio). Mol Ecol. 2011; 20(20):4259-76.
  • [42]Jacobson LH, Bettler B, Kaupmann K, Cryan JF. Behavioral evaluation of mice deficient in GABA(B(1)) receptor isoforms in tests of unconditioned anxiety. Psychopharmacology (Berl). 2007; 190(4):541-53.
  • [43]Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF. Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology. 2004; 29(6):1050-62.
  • [44]Mohler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012; 62(1):42-53.
  • [45]Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B et al.. Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl). 2012; 220(2):319-30.
  • [46]Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012; 35(11):649-59.
  • [47]Alderman SL, Vijayan MM. 11beta-Hydroxysteroid dehydrogenase type 2 in zebrafish brain: a functional role in hypothalamus-pituitary-interrenal axis regulation. J Endocrinol. 2012; 215(3):393-402.
  • [48]Muller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P et al.. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci. 2003; 6(10):1100-7.
  • [49]Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JMHM, Stalla GK et al.. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet. 1998; 19(2):162-6.
  • [50]Tokarz J, Norton W, Moller G. Hrabe de Angelis M, Adamski J: Zebrafish 20beta-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One. 2013; 8(1): Article ID e54851
  • [51]Oswald ME, Drew RE, Racine M, Gordon KM, Robison BD. Is Behavioral Variation along the Bold-Shy Continuum Associated with Variation in the Stress Axis in Zebrafish? Physiol Biochem Zool. 2012; 85(6):718-28.
  • [52]Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009; 16(5):300-17.
  • [53]Adamec R, Strasser K, Blundell J, Burton P, McKay DW. Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress. Behav Brain Res. 2006; 167(2):270-86.
  • [54]Cohen H, Kaplan Z, Matar MA, Loewenthal U, Kozlovsky N, Zohar J. Anisomycin, a protein synthesis inhibitor, disrupts traumatic memory consolidation and attenuates posttraumatic stress response in rats. Biol Psychiatry. 2006; 60(7):767-76.
  • [55]Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010; 68(4):261-75.
  • [56]Distler MG, Palmer AA. Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Front Genet. 2012;3.
  • [57]Gingrich JA. Oxidative stress is the new stress. Nat Med. 2005; 11(12):1281-2.
  • [58]Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM et al.. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature. 2005; 438(7068):662-6.
  • [59]Niki E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors. 2008; 34(2):171-80.
  • [60]Oswald ME, Singer M, Robison BD. The quantitative genetic architecture of the bold-shy continuum in zebrafish. Danio rerio PLoS One. 2013; 8(7): Article ID e68828
  • [61]Drnevich J, Replogle KL, Lovell P, Hahn TP, Johnson F, Mast TG et al.. Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc Natl Acad Sci U S A. 2012; 109 Suppl 2:17245-52.
  • [62]Renn SC, Aubin-Horth N, Hofmann HA. Fish and chips: functional genomics of social plasticity in an African cichlid fish. J Exp Biol. 2008; 211(Pt 18):3041-56.
  • [63]Whitfield CW, Cziko A-M, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees. Science (Washington D C). 2003; 302(5643):296-9.
  • [64]Cummings ME, Larkins-Ford J, Reilly CR, Wong RY, Ramsey M, Hofmann HA. Sexual and social stimuli elicit rapid and contrasting genomic responses. Proc Biol Sci. 2008; 275(1633):393-402.
  • [65]Harbison ST, Carbone MA, Ayroles JF, Stone EA, Lyman RF, Mackay TF. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet. 2009; 41(3):371-5.
  • [66]Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011; 12(9):524-38.
  • [67]Harrison PJ, Tunbridge EM. Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology. 2008; 33(13):3037-45.
  • [68]Clayton DF. The genomic action potential. Neurobiol Learn Mem. 2000; 74(3):185-216.
  • [69]Okuno H. Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res. 2011; 69(3):175-86.
  • [70]Wong RY, McLeod MM, Godwin J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genomics. 2014; 15(1):905. BioMed Central Full Text
  • [71]Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010; 26(7):873-81.
  • [72]Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40.
  • [73]Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011; 39:307-15.
  • [74]Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007; 35:193-200.
  • [75]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology 2005, 4:Article17.
  • [76]McCurley AT, Callard GV. Characterization of housekeeping genes in zebrafish: male–female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008; 9:102. BioMed Central Full Text
  文献评价指标  
  下载次数:44次 浏览次数:12次